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ABSTRACT 

Bakel, P.J.T. van. 1986. A systematic approach to improve the planning, design and oper-

ation of regional surface water management systems: a case study. Report 13 (special issue), 

Institute for Land and Water Management Research (ICW), Wageningen, The Netherlands. (XII) + 

118 p., 120 eqs., 52 tables, 75 figs., 98 refs., Eng. and Dutch summaries. 

Also: Doctoral thesis, Agricultural University, Wageningen, The Netherlands. 

From an agricultural point of view the most desired surface water level in areas with a 

shallow groundwater table is low during winter and high during the growing season. Waterboards 

in the Netherlands try to fulfil this demand by applying different surface water levels in 

winter and summer. 

Because weather conditions vary considerably from year to year, the most desired open wa-

ter level should be varied too. 

The manipulation of weirs by the waterboards is mainly based on practical experience and 

is not much different from year to year. To obtain better founded rules for surface water 

manipulation, a study was carried out in a cut-over peat region of about 8000 ha. 

For the surface water, the groundwater and the unsaturated soil water system in this area 

a simulation model was constructed that links these systems mutually and offers the possibili-

ty of computing consequences of manipulating open water levels for the water use by crops. The 

model was calibrated with hydrological data collected in the area. Operational rules for set- 

ting weirs and inlet structures were established by comparing the effects of a number of possi-

ble rules on depth of groundwater tables and consequent water uptake by the crops for a number 

of meteorological years. With the operational rules that gave the largest effects on water use 

by the crops management strategies involving water conservation and additional water supply 

capacities for sub-irrigation were simulated with the model. The additional transpiration 

by the crops caused by these strategies were converted to extra yields so that an economical 

analysis of these strategies became possible. With the aid of the results of this analysis also 

a demand function for water for the study area was derived. Finally the possible application of 

the demand function in the water management policy at provincial level was outlined. 

The results show that the proposed model offers good possibilities to forecast effects of 

water management strategies. It can be used by a waterboard to decide upon changes in open wa-

ter levels that are required in the course of the season because of weather conditions. The 

weakest point in the model seems to be the lack of knowledge about the possible negative effects 

of waterlogging on transpiration by crops. 

For the conditions prevailing in the study area, water conservation is economically very 

attractive. Additional water supply to the area for sub-irrigation has a relatively low effi-

ciency, but the economical analysis shows that investments in this strategy may pay off too. 
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1. INTRODUCTION 

In the history of hydrology one can distinguish 

a few major trends. From the formulation of the law 

of Darcy in 1856 until the beginning of the sixties 

of this century there has been a gradual increase in 

the knowledge of the physical process of the flow of 

water in soils and of the mathematica) formulation of 

it. This resulted in a large variety of analytical so-

lutions of flow problems. The introduction of elec-

tronic computers created a number of new possibili-

ties namely: 

- complex flow systems for which no analytical solu- 

tions were possible, can be solved numerically; 

- large-scale problems can be handled because comput-

ers can manage a great number of data. 

Also in the beginning of the sixties people 

started to realize that water is, to some extent, a 

non-renewable resource. With a growing population and 

the increase of economie activities water became 

scarce, even in a humid country like the Netherlands. 

This leads to conflicting interests. Because of the 

complexity of the problem of water allocation a sys-

tematic approach using techniques developed in Systems 

Analysis may be helpful. One of the essential parts 

of Systems Analysis is the use of a combination of 

hydrological and management models. Using a computer 

for simulations, a powerful instrument for water man-

agement is at hand, known as 'Water Resources Systems 

Engineering'. Up til) now only a few good examples of 

successful application of this method to water manage-

ment problems are available. In fact, in much of this 

type of work use is made of techniques stemming from 

Systems Engineering, for instance in the field of hy-

drological simulation models. The final goal of this 

kind of modeling is an integrated system of models for 

the whole terrestial phase of the hydrological cycle, 

each model representing a subsystem (e.g. the unsatu-

rated soil water system, the groundwater system, etc.). 

In the Dutch situation the planning, design and 

operation of the water resources systems, particular-

ly at regional/local level at which waterboards func-

tion, is very traditional: it is based on practical 

experience and thumb rules. The day-to-day operation 

can be characterized in general as some (improved)  

version of the so-called complaint system. This means 

that waterboards act according to simple standard 

rules and take only action when obviously something 

goes wrong. Under normal situations operations may 

approach optimum conditions but without a systematic 

approach this cannot be proved. 

The traditional approach of water management by 

Dutch waterboards can partly be explained on histor-

ical grounds. In the past the main aim of water man-

agement was to improve drainage conditions in order 

to create a more favourable environment for crop 

growth. During the last decades also measures to in-

crease the water uptake by the crops from the soil 

have been introduced. This can be realized by raising 

surface water levels in spring to reduce or stop the 

drainage of the precipitation surplus, and to supply 

water from outside the region for sub-irrigation or 

sprinkling irrigation. Under Dutch conditions good 

drainage during winter and realization of water con-

servation and sub-irrigation during the growing sea-

son means manipulation of the surface water level. 

Because of from year to year varying weather condi-

tions a standard operation procedure can be far from 

optimal. 

To improve their management waterboards apply 

empirical operational rules. Increasing competition 

between parties concerned in water management, how-

ever, makes more objective methods for planning, de-

sign and operation necessary. This in fact is the main 

reason for undertaking this study. 

In the waterboard 'De Veenmarken' in the eastern 

part of the province of Drenthe with an area of about 

25 000 ha, farmers constitute the only water users 

group. The board designed and partly implemented a 

water conservation and supply plan making optimum use 

of ground and surface water by means of regulating 

the level in the open watercourses. The construction 

of the technical works in the part of the area called 

'De Monden', having a size of about 8000 ha, was fin-

ished in 1978. This area was used as the pilot area 

for this study. 

The water conservation and supply system was de- 
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signed in a traditional marmer. The design was based 

on a mixture of empirical design and research find-

ings. The operation of the system was 'heuristic', 

i.e. the waterboard installed a number of piezometers 

and used the recorded groundwater depths to manipulate 

surface water levels. The problem with this method 

is that one never knows whether the best water man-

agement is attained. Therefore the waterboard request-

ed an investigation on the applicability of a more 

systematic approach to water management problems on 

regional/local level. This report is the scientific 

outcome of this study. 

In Chapter 2 a description of the general con-

cepts of Water Resources Systems Engineering and the 

application of this approach to water resources man-

agement in the Netherlands is given. In particular, 

the interdependence between national, provincial and 

regional water management systems will be pointed out. 

Chapter 3 gives a description of the pilot area 

'De Monden' while in Chapter 4 a systematic approach 

needed for the design of models has been given. 

In Chapter 5 the modeling process itself is déscribed. 

Calibration and verification of the models and a sen-

sitivity analysis are reported in Chapters 6 and 7. 

An essential part of the modeling was the deter-

mination of operational roles for the day-to-day sur-

face water manipulation. Chapter 8 is dedicated to 

this subject. 

In Chapter 9 the hydrological effects of water 

conservation and water supply are simulated with the 

aid of the developed models. On the basis of results 

obtained with the models a number of practical aspects 

of surface water management are dealt with in Chapter 

10. These aspects concern the effects of installation 

of a pipe drainage system, the maintenance of water-

courses and the optima' location of piezometers to be 

used as a basis for surface water management measures. 

In Chapter 11 the economical aspects of surface 

water management will be treated. Based on the eco-

nomical analysis a demand curve for water to be sup-

plied to the area 'De Monden' has been generated. 

Finally the interaction between surface water manage-

ment on local/regional level and the provincial and 

national water resources management systems is dis-

cussed. 
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2. GENERAL CONCEPTS AND APPLICABILITY OF WATER 
RESOURCES SYSTEMS ENGINEERING 

In the introduction, it has been suggested that 

a systematic approach using techniques developed in 

Systems Analysis might be helpful in improving the 

water management of a particular region. This ap-

proach, called Water Resources Systems Engineering, 

will be discussed now in more detail, starting with 

the general concepts of Systems Engineering. Applica- 

tion of this approach will be discussed in the context 

of the Dutch national and provincial water resources 

management systems. 

2.1. GENERAL CONCEPTS OF SYSTEMS ENGINEERING 

A growing population and an increasing prosperity 

requires efficient use of natural resources. Weighing 

interests and avoiding conflicts in water manage- 

ment require more technology than currently assumed. 

This implies that engineers and research workers 

should place more emphasis on 'prescriptive' rather 

than an 'scientific' or 'descriptive' problem-solving. 

The engineering process should be integrated with el-

ements of other disciplines, particularly economics 

and all aspects involved should be considered simulta-

neously. Such an integration requires a systematic 

approach - the Systems Approach. The use in this ap-

proach of formalized procedures, particularly mathe-

matical models, is called Systems Analysis or Systems 

Engineering. 

The book of MAASS et al. (1962) is considered to 

be the first publication in which the specific features 

of application of Systems Analysis to Water Resources 

Management were outlined. The approach utilizes exist-

ing principles and techniques; its only novelty is its 

holism (HALL and DRACUP, 1970): 'Systems analysis is 

the science of selecting from a large number of fea-

sible alternatives, involving substantial engineering 

control, that particular set of actions which will 

best accomplish the overall objectives of the decision 

makers, within the constraints of law, morality, eco-

nomics, resources, political and social pressure, and 

laws governing the physical life and other natural 

sciences'. 

Hall and Dracup distinguish between 'Systems Anal-

ysis' as defined above and 'Systems Engineering' which 

also involves subjective elements. Because, in the  

opinion of the author, the Jatter especially is true 

in water resources management, the term Systems En-

gineering is preferred. The continuity of engineering 

and the Systems Approach is illustrated by TOEBES' 

(1975) cryptic remark that 'Systems Engineering is 

engineering, only more so'. 

The main characteristics of Systems Engineering 

according to TOEBES (1975) are: 

- the combination of technical and economic disci-

plines; 

- systems orientation. A system can be defined as a 

set of components interacting in a predictable, in-

terdependent way. It is characterized by a system 

boundary with inputs and outputs, interrelations 

among (sub)elements, input, output and feedback 

(HALL and DRACUP, 1970). Reality is modelled as a 

group of subsystems, whose outputs determine the 

extent to which the objectives are achieved. Model-

ing simplifies the problem by taking into account 

only the most important processes and interrela-

tions; 

- the definition of the objective function(s). Again 

quoting HALL and DRACUP (1970): 'An objective is 

any statement by which the consequences or output 

of a system can be determined, given the policy, 

the initial stage of the system and the system pa-

rameters'. Thus, the objective function is the 

mathematical expression of the objective; 

- parametric design. By changing the objectives sys-

tematically, alternatives can be obtained which are 

fundamentally different; 

- mathematical modeling. Several types of mathematic-

al models are applied in order to avoid the inaccu-

racy of verbal expressions, thus allowing formal 

optimization. This is perhaps the most striking 

feature of Systems Engineering. Besides, the recent 

development of the digital computer, with its capa-

bility of solving large sets of simultaneous equa-

tions, has allowed Systems Engineering to flourish. 

The framework in which mathematical models are 

used in Water Resources Systems Engineering has been 

depicted in Fig. 2.1. A distinction is made between 

two main types of models, descriptive and prescriptive 

ones. Descriptive models generate relations, e.g. the 

amount of water pumped from an aquifer and the draw- 
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n 

descriptive model(s) 

water management more sophisticated. During the last 

decades waterboards pay considerable attention to 

water supply for agriculture during dry periods and 

to non-agricultural interests like nature. Rapid 

progress is now being made in the incorporation of 

these aspects into laws and administration. 

In the water management in the Netherlands one 

can distinguish three governmental levels (Fig. 2.2): 

environment 

model results 

prescriptive model(s) 

T 
objective(s) 

Fig. 2.1. Schematic representation of using mathemat-
ical models in Water Resources Systems Engineering 

down of the phreatic level. Prescriptive models eval-

uate the outputs of descriptive models in terms of 

the objective function(s), and thus form the basis 

for policy decisions. 

In recent years there has been a dramatic rise 

in the popularity of Systems Engineering, as shown by 

an explosive increase of the number of publications 

on this subject. In spite of this popularity the in-

fluence of Systems Engineering on the actual improve-

ment of water resources management is still question-

able, and most of the reported applications can be 

classified as 'letters of intention'. As stated by DE 

DONNEA (1978): 'The influence of Systems Engineering 

on water management is not proportional to the intel-

lectual efforts'. 

In the Netherlands proper water resources manage-

ment seemed to be not urgent because of evident abun-

dance of water. Due to growing demands, only recently 

the need for a more optimal use of water resources 

was feit. To obtain this goal, also Systems Engineer-

ing was applied, as will be discussed below. 

2.2. APPLICATION OF SYSTEMS ENGINEERING IN SURFACE WA- 

TER RESOURCES MANAGEMENT IN THE NETHERLANDS 

2.2.1. Structure of the surface water manage-

ment system 

Because of geographical, topographical and clima-

tological reasons, the main water management problem 

in the Netherlands has been for a long time to avoid 

crop damage caused by an excess of water. For this 

purpose dykes were constructed in low-lying areas and 

the land was drained by enlarging natural streams and 

digging of additional watercourses. Since the cre-

ation of organizations like waterboards and polder 

districts, practical experience and research have made 

- national level. For the management of the national 

surface water system a special water authority the 

'Rijkswaterstaat', falling under the Ministry of 

Traffic and Communications is responsible; 

- provincial level. The 'Provinciale Waterstaat' must 

ensure that the surface water system in the province 

is properly managed; 

- regional/local level. Locally and regionally the 

surface water management is carried out by special 

bodies, the waterboards. There is a tendency to re-

duce the number of waterboards, while with the in-

troduction of the Public Law on Pollution of Surface 

Water a number of waterboards has the care for the 

quality of the surface water too. The waterboards 

are supervised by the provincial water authority. 

The scheme in Fig. 2.2 suggests that there is a 

strong interdependence between the different levels. 

Although at least same feed-back mechanisms are oper-

ational, the actual situation is not so clear because 

at each level the requirements posed by the higher 

level are not always known. As an example water-

boards have to know the surface water supply pos-

sibilities offered by the province in order to opti-

mize their surface water management, but the provin-

cial authority does not know the water supply possi-

bilities given by the national authority. Hence it 

cannot realize optimum water supply possibilities 

for the different waterboards. This situation is 

mainly caused by the fact that at all levels there is 

a lack of good methods to establish standard water 

management policies. 

2.2.2. Application of Systems Engineering to 

water management 

At national level, the main objective is to max-

imize total revenues. The national water authority 

therefore has to consider measures whose influence ex-

tends over more than one province and affect more 

than agriculture alone. For example, the distribution 

of Rhine water is based on demands for agriculture, 

for,shipping, for power generation and for domestic 

water supply. 

To optimize the management of national water re- 
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Fig. 2.2. Structure of the water re-
sources management system in the 
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sources the Dutch government initiated in 1976 the 

study 'Policy Analysis for the Water Management of the 

Netherlands' (PAWN). The primary tasks of PAWN were 

(ABRAHAMSE et al., 1982): 

- development of a methodology for assessing the mul- 

tiple consequences of water management policies; 

- application of the methodology to develop alterna-

tive water management policies for the Netherlands 

and to assess and canpare their consequences; 

- creation of Dutch capability for further analysis 

of water management. 

The PAWN-study clearly illustrates the use of 

Systems Engineering because: 

- a distribution model for the national water system 

was constructed; 

- models were developed to calculate the various de-

mands for water; 

- the effects of policies for water allocation among 

various users are expressed in benefits and costs 

for all users. 

In Dutch legislature the supervision of most of 

the laws concerning environmental problems is put in 

the hands of the provinces. The new Groundwater Law 

prescribes that the provinces have to develop a master 

plan for their groundwater management. The same policy 

will be followed with the Water Management Law. 

The application of Systems Engineering at provin- 
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cial level was pioneered by the C 	mnission for Water 

Management in the province Gelderland (CWG). Some 

prescriptive models were developed, but especially 

the construction of hydrological simulation models 

was particularly successful (DE LAAT and AWATER, 

1978). The use of descriptive and prescriptive models 

in conjunction, however, was less satisfactory. 

At the waterboard's level the application of Sys-

tems Engineering is least advanced, probably•because 

the integration of the interests of the various groups 

was not considered to be important up to now. The com-

plaint system, used by the waterboards, can satisfy 

the demands of a limited number of users provided 

their interests are not too divergent. Recent develop-

ments, however, demand a critical appraisal of current 

management practices: 

- intensive agriculture demands a sophisticated water 

management which balances drainage requirements for 

heavy machinery and water requirements for high-

yield crops; 

- although agriculture is by far the most important 

user of water in the Netherlands, the needs of other 

users have to be accounted for too; 

- a good water management is essential for conserva-

tion of nature and water management practices can 

influence the possibility of groundwater extraction 

for domestic and industrial purposes. 

Because of the structure of the surface water 

management system in the Netherlands an overall opti-

mization is quite difficult. A workable procedure with 

respect to surface water quantity may in principle be 

constituted along the following lines. 

At users level, a demand function for water can 

be established giving the relation between quantity of 

demanded water and marginal productivity. From the 

user demand functions the waterboard can generate a 

regional demand function for water. The provincial wa-

ter authority can use the waterboard demand functions, 

together with demand functions of other users with in-

terests on provincial level, to generate a provincial 

demand function for water. Finally, the national water 

authority can use provincial demand functions together 

with demand functions of other users on national level 

to optimize the management at national level. This pro-

cedure should yield supply functions of water to the 

provinces. In this respect a supply function is the 

relation between quantity of supplied water and costs 

per unit of water. Supply functions on provincial lev-

el should in turn yield supply functions for the dif-

ferent waterboards within the province. With this 

framework once given a waterboard can optimize its 

surface water management system, both with respect to 

design and operation. 

In the suggested approach, Water Resources Sys-

tems Engineering must be applied at all levels. This 

study attmnpts to extend the application of Systems 

Engineering at waterboard level. 

As already mentioned in the introduction, the 

water conservation and supply system for the study 

area 'De Monden' was designed in a traditional way. 

The manipulation of water levels in the water courses 

is done empirically with the implicit objectives to 

minimize water damage to crops because of insufficient 

drainage and to maximize effects of water conserva-

tion and water supply on crop transpiration and pro-

duction. The first objective requires a low surface 

water level, the second a high one. Fortunately, crops 

grow in summer, while good drainage is required main-

ly in winter. Optimization therefore is complicated 

and requires a more systematic approach, used in this 

study. 

The main objectives of the study are: 

- to detennine the optimal surface water manipulation 

for maximum crop production, given technical and 

administrative constraints; 

- to find out which measures should be taken by the 

waterboard and whether they are acceptable for the 

farmers; 

- to investigate the economical feasibility of water 

conservation and supply by means of sub-irrigation. 

Besides some other objectives should be taken 

in mind too: 

- the optimization of the surface water manipulation 

should be capable to give a demand function for wa-

ter to be used in the weighing process on provincial 

level; 

- the solution obtained for the pilot area must be 

such that it can be applied to other areas with the 

same bind of surface water management system; 

- the design criteria for water conservation and water 

supply plans are mainly based on practical experi-

ence. Part of this study therefore will be the eval-

uation of current design rules. 
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3. DESCRIPTION OF THE RESEARCH AREA 'DE MONDEN' 

3.1. GENERAL 

The research area 'De Monden' being about 8000 

ha is part of an aImost completely reclaimed, former 

raised bog region. Its geographical position is given 

in Fig. 3.1. The area covers about one-third of the 

territory of the waterboard 'De Veenmarken'. 

In the next sections the geological origin, the 

reclamation, history, the present agricultural situa-

tion, the topography and soil types, the soil improve-

ment and the water management situation of the area 

will be discussed. 

3.2. GEOLOGICAL ORIGIN 

Mich of the following information is obtained 

from BODEMKAART VAN NEDERLAND (1980). The eldest de-

posits in the area are the tertiary Breda and Scheem-

da Formations. The top of these marine clays and fine 

sandy layers is situated at about 80 m below sea 

level. At the beginring of the Quarterny coarse sand 

has been deposited by rivers. Of these deposits (Har- 

Fig. 3.1. Topography of the former raised bog region, 
the waterboard 'De Veenmarken' and the research area 
'De Monden' 

derwijk and Urk/Enschede Formations) about 40 m is 

left. During the Cromerian phase of the Quarterny, a 

period with alternating warmer and colder climates, 

finer layers were deposited and in some places peat 

started to grow. During the Elsterian land ice 

reached the northern part of the Netherlands. The 

ice carved very deep gulleys that were filled later 

on with melt water deposits (Peelo Foination). In the 

research area these deposits of fine-graded material 

fors a layer of 15 m at the utmost. During the next 

glacial stage, the Saalian, a large part of the 

Netherlands was covered with land ice. In this period 

a northeast-southwest directed ice pushed ridge, the 

'Hondsrug', was formed. The melt water eroded a wide 

and deep valley east of this ridge of which the 

present Hunze valley forms a remnant. Deposits from 

this period consist of rather coarse sand (Drente 

Formation). In the Eemian Interglacial the filling 

continued with finer material. During the Weichselian 

Glacial most of the Eemian deposits were eroded. Also 

much wind erosion took place, resulting in deposits 

of 'old cover sands' in the lower parts of the area. 

Later on a more local wind erosion resulted in the 

forming of low dure ridges of 'young cover sands' 

(Twente Formation). As a result, drainage was re-

stricted and a lacustrine organic mud called 'gyttja' 

was formed in the stagnant pools. 

During the Holocene a vast raised bog area was 

formed. In principle the following phases of peat 

forming can be distinguished (CASPARIE, 1972): 

- in the lowest places of the Hunze valley drain-

age was hampered by cover sand ridges. In the de-

pressions peat was formed. On higher places a wood, 

mainly existing of Betitea, developed; 

- about 4000 years B.C. the climate became somewhat 

warmer and brook peat extended at the cost of the 

wood; 

- about 3000 years B.C. on most places the peat layer 

had grown so thick that the peat forming organisme 

became more and more dependent on rain water for 

their nutrition. Sphagnum became the most important 

peat forming organism; 

- from 2000 years B.C. the oligotrophic sphagnum peat 

extended to the originally higher places and the 

peat became even more oligotrophic. The sphagnum 

peat can be divided in old sphagnum peat 
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Fig. 3.2. Geological cross-sections over the research area 'De Monden' showing the extension of the different 
geological formations 

trophic), young sphagnum peat (strongly oligotroph-

ic) and a white loose peat called 'bolster' (upper 

not humified layer of the young sphagnum peat). 

Tta geological cross-sections compiled by POMPER 

(1981) clearly demonstrate the geological history 

outlined above (Fig. 3.2). For the composition of 

these profiles data from the archive of the National 

Water Supply Institute and from ten straight-flush 

drillings, especially made for this study were used. 

The upper boundary of the Scheemda Formation is sit-

uated roughly at 50 m below sea level. Above this the 

Harderwijk, Enschede and Urk Formations are present. 

The Peelo Formation reaches almost to the ground sur-

face at the Hondsrug, but in the Hunze valley this  

layer has almost completely disappeared by erosion. 

Only at a few places the Cromerian clay was found 

between the Urk and Peelo Formations which confirms 

its very local occurrence. The Drente Formation is 

present everywhere cast of the Hondsrug, with the 

thickest layer in the Hunze valley. The deposits 

from Eemian origin are only present at the western 

border of the Glacial valley. Finally the profiles 

show how thin the recent Holocene deposits are now-

adays. This is mainly caused by human activities. 

3.3. RECLAMATION HISTORY 

The thick peat layers were an attractive source 
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Fig. 3.3. Pattern of main and second-
ary canals in the reclaimed peat re-
gion (after 'Sectoradvies Landschaps-
bouw voor het deelgebied Kanaal-
streek', 1980) 

of energy. Already in the twelfth century sporadic 

peat-harvesting took place along the higher sand 

ridges. 

In the beginning of the 17th century the system-

atic peat harvesting and reclamation started, mainly 

under the supervision of the city of Groningen. For 

the transport of the dried peat by ship, the Stadska-

naal was excavated, a main canal running from Gronin-

gen in south-east direction. From the Stadskanaal the 

systematic reclamation of the area was undertaken. 

This happened by excavating main canals (so-called 

'monden') perpendicular to the Stadskanaal. Next 

smaller laterals, so-called 'wijken', were dug ortho-

gonal to the main canals at mutual distantes of 150 

(oldest reclamations) to 200 m (younger reclamations). 

In this way a regular pattern of water courses result-

ed. Fig. 3.3 gives this pattern together with the 

approximate years of construction. 

The reclamation of the area was closely related 

with the peat harvesting (BODY, 1956). Excavation of  

a new 'wijk' started with harvesting a strip of peat 

with the width of the planned canal. The next year a 

parallel strip was harvested to create a dumping 

place for the sand from the canal to be excavated. 

Between the 'wijken' every year a strip of peat was 

harvested. The upper 0.5 m of white loose 

peat ('bolster') which was not very suitable for fuel 

was dumped in the previously excavated pit. After cam-

pletion of the peat harvesting, the area was levelled 

and the sand depot along the 'wijk' was spread over 

the field. For drainage purposes a main ditch called 

'zwetsloot' was excavated midway between the 'wijken' 

and when necessary smaller drainage ditches were cre-

ated. Fig. 3.4 gives a schematic diagram of the var-

ious water courses. 
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Fig. 3.4. Schematic diagram of different watercourses 
and their names 

3.4. AGRICULTURE 

The soil was originally used as arable land be-

cause the city of Groningen prohibited the use as 

grasstand. en the other hand the city offered its 

refuse free of charge during the first 10 years of 

cultivation. Therefore the poor chemical fertility 

could be overcare and the advantage of the favourable 

water supply capacity of the profile could be used. 

After the introduction of chemical fertilizers, 

around 1880, and the establishment of the potato-

starch and straw-carton industry the share of potatoes 

in the cropping pattern increased till about 50%. The 

remainder crops are mainly cereals and sugar beets. 

Of the total area of 7900 ha, approximately 6000 

ha is used by agriculture. The acreages of the main 

crops are given in Table 3.1. These data show that 

the area remained almost completely arable. One of 

the problems in the area is that the income of the 

farmers depends largely upon the market prices of po-

tato starch. 

Due to the rapid mechanization during the last  

decades the size of the farms is too small. Already 

in 1965, when the average size of the farms was 

about 20 ha, this problem existed (MEIJERNAN, 1966). 

The present average size of 30 to 35 ha still is too 

small. 

3.5. TOPOGRAPHY AND SOIL 

The geological origin, the reclamation and the 

subsequent agricultural use are the most important 

factors which constitute the present topography. The 

elevation of the area shows the presence of the 

'Hondsrug' ánd the cover sand ridges (Fig. 3.5). 

A soil map of the area is presented in Fig. 3.6. 

The profiles depicted on this map can be classified 

in four main groups: 

- deep peat soils (units zVc, aVc, iVc). These soils 

have more than 40 cm peaty material (>15% organic 

matter) between 0.0 and 0.8 m and the upper bound-

ary of the sandy subsoil is more than 1.2 m below 

soil surface. Soil profiles of this group are situ-

ated in a belt along the Hondsrug and in the de-

pressions between sand ridges in the reclaimed peat 

area; 

- moderately deep peat soils (units aVz, zVz, iVz, 

iVp). As above, but with the upper boundary of the 

sandy subsoil within 1.2 m below soil surface. 

These soils are found in places with a relatively 

higher elevation of the sandy subsoil; 

- peaty soils (units zWz, iWz, iWp). The thickness of 

the peaty layer is less than 0.4 m. Most of the soils 

of the reclaimed peat area belong to this group; 

- sandy soils (units Hn21, pZn21). The thickness of 

the peaty layer in this soil type is smaller than 

0.05 à 0.15 m. The geographical position coincides 

in general with sand ridges. 

As can be deduced from the description given 

above there is some systematic relation between the 

spatial distribution of soil types and the topography. 

This is mainly due to the original topography of the 

mineral subsoil and the reclamation. 

Cereals Potatoes for Sugar Grass- Fodder Miscella-
industrial beets land maize 	neous 

use 

Absolute (ha) 	1500 	2900 	1150 	200 
Relative (%) 	25 	48 	19 	4 

	

200 	50 

	

3 	1 

Table 3.1. Acreage of the main crops 
in 'De Monden' in 1980 (after LEI and 
CBS, 1980) 

   

1 0 



Boundary of study area 

Fig. 3.5. Elevation map of the area 'De Monden'. Figures refer to elevation above Ordnance Datum 

3.6. SOIL IMPROVEMENT 

During reclamation of ten serious mistakes were 

made. According to Van DUIN and Van WIJK (1965) the 

following mistakes can be distinguished: 

- the water level in the 'wijken' during the peat 

harvesting was too high, so not all peat could be 

removed and there remained a low permeable layer; 

- due to a shortage of sand the reclaimed soil was  

too humous; 

- the depth to which peat was removed varied from year 

to year which caused differences in elevation; 

- during the reclamation low penneable layers formed 

by non-harvested peat and cemented B-horizons were 

not broken; 

- the amount of 'bolster' was not always sufficient. 

Often part of it was burned or used for peat litter; 

- the sand cover fonning the top layer was not spread 

equally; 
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Explanation of codes 

Soilgroups 
H : Humus podzols 
Z : Sandy gley soils 
V : Deep peat soils 

W : Shallow peat soils over-
lying sandy bog floor 

Topsoils 

a .. earthified peat 
i .. man - made topsoil, 10 - 20 cm thick, peaty to humous fine sand 
p .. dark, humous topsoil, fine sand 
v 	peaty topsoil 
z .. man - made topsoil, 20 - 30 cm thick, humous fine sand 

Subsoils 
.. c Carex peat 

.. n hydromorphic characteristics 

.. p podzolised sandy bog floor 

z non - podzolised sandy bog floor 
.. 21 sand to loamy fine sand 

E.g. pZn21 is a sandy gley soil with a dark topsoil, developed from sand to loamy sand. 

Fig. 3.6. Soil map of the area 'De Monden' 

- the sand from the canals was too loamy or the amount 

was too small. 

The mistakes causing insufficient rooting possi-

bilities and a bad vertical water movement, have also 

led to considerable differences in soil profiles over 

short distances which reduce the agricultural quality 

of the soil. To compensate losses of organic matter 

in the top layer, each year about 0.5 cm of peat was  

brought up from the subsoil by ploughing. This caused 

a steady reduction of the thickness of the peat layer 

below the root zone that acts as a water reservoir. 

As a consequence, the soil became more sensitive to 

drought and wind erosion (WIND, 1979; BRUSSEL, 1980). 

In a number of cases soil improvement offers a 

possibility to raise the agricultural value or to 

stop further soil degradation. According to BODY et 

al. (1975) the improvements given in Fig. 3.7 can be 

applied. 
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Sandy soils with a thin humous root zone and a 

dense subsoil can be improved by subsoiling. Care 

should be taken that the top soil does not become too 

low in organic matter. Negative effects of this type 

of improvement have been found for grassland 

(SCHOTHORST and HETTINGA, 1983). The root zone of 

soils in the reclaimed peat area preferably must have 

an organic matter content of 10 to 15%. To prevent 

oxydation of the remaining peat layer this layer can 

be mixed with the sandy subsoil. After mixing the sub-

soil consists of peat and sand. Each year a thin 

layer of the subsoil must be mixed with the top soil 

to compensate for losses in organic matter. An addi-

tional advantage of this method was the improved ver-

tical water movement (both percolation and capillary 

rise) and the enlargement of the root zone. 

Deep peat soils can be dressed with sand in order 

to improve the workability and to diminish the sensi-

tivity for night frost. However, this way of soil im-

provement is rather expensive and can only be execut-

ed when the depth of the sandy subsoil is not more 

than 3 m. 

On a number of experimental fields the effect of 

soil improvement en crop yield has been investigated. 

These experiments are summarized in Table 3.2, 

which gives the long term average increase in yield  

Table 3.2. Averaged extra yield (in %) in Borgercom-
pagnie (30 cm peat in subsoil) and Emmercempascuum 
(80 cm peat in subsoil) due to soil improvement 

Crop 
	

Borgercompagnie 	Emmercompascuum 

Sammer wheat 
	

15 
Oats 
	

15 
	

0 

Potatoes 
	

9 
	

0 

Sugar beets 
	

14 

of four crops due to soil improvement. Evidently soil 

improvement is most effective for soils with a limit-

ed peat thickness in the subsoil (WIEBING and WIND, 

1979). 

An inventory in 'De Monden' showed that nearly 

all peaty soils have been improved. This fact is im-

portant when soil physical conditions are considered 

later on. 

3.7. WATER MANAGEMENT SITUATION 

3.7.1. Water management at waterboard level 

The system of main canals ('monden') and small 

canals ('wijken') excavated for the peat harvesting 

was very suitable for the discharge of drainage water 
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cient to meet evaporation demands. To overcome this 

problem soil improvement and additional water supply 

are needed. By maintaining a high open water level 

during the whole growing season, subsurface irriga-

tion occurs (Fig. 3.8c). 

To improve conditions a new type of water manage-

ment was required consisting of a combined system of 

drainage, water conservation and sub-irrigation. In 

the area 'De Monden' this was realized by construct-

ing a number of new weirs and inlet structures. The 

area was divided into 13 sections with different 

open water levels. To manipulate open water levels 

weirs were made adjustable. The geometry of the inlet 

structures is based on a supply capacity of 0.3 

1.s -1 •ia-1 (about 2.5 mm.d 1 ). 

The final system consists of 20 adjustable weirs 

and 10 inlet structures (Fig. 3.9). The adjustable 

weirs are provided with sensors so that the weir is 

raised or lowered automatically dependent on the wa-

ter flow. 

summer level 

winterlevel 

3.7.2. Water management at farmers level 

Fig. 3.8. Schematic presentation of development stages 
in the water management situation 

from main ditches and parcel ditches. Besides these 

watercourses themselves had a drainage function. Due 

to the loss of organic matter in the topsoil, and 

subsidence of peat layers in the subsoil the soil sur-

face became uneven and the drainage situation deteri-

orated (Fig. 3.8a). 

Till about 1960 the transport of agricultural 

products took place by ship, so high water levels in 

the canals were needed. Therefore farmers started to 

dam off the small canals in order to create a lower 

open water level during periods without transport. 

In the beginning of the sixties road transport 

became ccmmon in the area and so the water level could 

be lowered in all canals (Fig. 3.8b). Next for mech-

anization purposes the small parcel ditches and some 

of the main ditches were filled up by the farmers. 

Maintaining a low water level throughout the 

year caused, however, a shortage of water during dry 

periods in summer. In order to prevent this shortage, 

at least partially, the water level should be raised 

in spring before the end of the period with a rainfall 

surplus, in order to conserve water. In dry growing 

seasons, however, this water conservation is insuffi- 

The original dimensions of the small canals were 

5.00 m bottom width, 2.60 m depth and side slopes 

1:1.5. For the discharge of drainage water from ad-

jacent sites the capacity of these canals was far too 

large. 

After the canals lost their transport function 

the water levels were lowered to a depth of about 

1.20 m below soil surf ace. As a consequente the den-

sity of the ditch drainage system could be reduced. 

Farmers started to fill up the field ditches and main 

ditches that hampered mechanization. At present the 

small canals form the main drainage system. Because 

of the large water transport capacity of these canals 

their maintenance was neglected. Such canals, however, 

can became overgrown within 10 to 20 years, resulting 

in a deterioration of their hydrological functioning 

(Fig. 3.8c). Nowadays the majority of the small canals 

is seriously overgrown. This means that they have to 

be cleaned and reshaped to restore or improve their 

hydrological functioning (Fig. 3.8d). A complete re-

covery of the small canal system is foreseen (HERIN-

RICHTINGSPROGRAMMA, 1979). 

Root zone 
	

Sand 

white loose pest 
	

Old sphagnum peat 
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Fig. 3.9. Structures for water management and sections with the same open water level in the research area 'De 
Monden'. Letters and numbers refer to sections 
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4. PHYSICAL-MATHEMATICAL APPROACH 

4.1. INTRODUCTION 

The most critical points in any hydrologica.l re-

search project are: a) sdhematization of the hydrolog-

ical processes involved, b) detection of the key prop-

erties of the hydrological system and c) mathematical 

modeling of the relevant physical processes. Especial-

ly for the first two points no strict roles can be 

given. 

In this chapter the above mentioned points will 

be discussed keeping in mind the objectives of this 

study. One can try to reach this goal by either per-

forming field experiments or by hydrological modeling. 

Field experiments are very time consuming, and the 

results only hold for the circumstances encountered 

during these experiments. Therefore hydrological mod-

eling is often used as a way out. For this purpose 

the complex hydrological reality has to be translated 

into systems. 

A perceptual model of the hydrological system 

under discussion in Forrester notation is given in 

Fig. 4.1A for the sub-irrigation situation and in 

Fig. 4.1B for the drainage situation. From these fig-

ures the following sub-systems can be distinguished: 

- atmosphere - crop system 

- unsaturated groundwater system 

- saturated groundwater system 

- surface water system 

These sub-systems are interrelated through mass 

(water) flow. To arrive at a solution a mathematical 

description of each sub-system and of the mass flows 

interrelating the systems is necessary. In this chap-

ter this problem will be discussed. 

4.2. THE ATMOSPHERE - CROP SYSTEM 

4.2.1. Physical mathematical backgrounds 

The atmosphere may be considered to act as the 

upper boundary of the hydrological system under con- 

Fig. 4.1A. Perceptual model of the hydrological system for water supply with sub-irrigation situations 
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Fig. 4.1B. Perceptual model of the hydrological system for drainage situations 

sideration. This means that feedback can be neglect-

ed and that the state variables of the atmospheric 

system are assumed independent of changes in the wa-

ter management system. For dry climates and large-

scale projects this is not true for evapotranspira-

tion (MORTON, 1978), but in the temperate climate of 

the Netherlands there is no evidence for incorporat-

ing a feedback. 

The exchange of water between soil surface and 

atmosphere generally is described by making use of 

the energy balance. This balance of a surface can be 

written as:  

where c 1  and c 2  are constants, Ts  and Ta the tempera-

ture at the water surface and in the air at screen 

height respectively, e s  the saturation water vapour 

pressure at the water surface, e a  is the water vapour 

pressure at screen height and r a  is the aerodynamic 

resistance. 

From eqs. (4.1), (4.2) and (4.3) PENMAN (1948) 

derived the well-known combination equation for open 

water evaporation: 

s(Q*  - G)/X + yEa Eo - s + y (kg•m-2 .s -1 ) 
	

(4.4) 

Q*  = G + H + XE 
	

(N•m-2 ) 
	

(4.1) 
	with 

(kgm 2 •s -1 ) 
	

(4.5) where Q*  is net radiation flux density, G is soil 

heat flux density, H is sensible heat flux density, 

and XE is latent heat flux density. The constant X is 

the specific latent heat of vaporization and E is 

evaporation rate. 

For a water surface H and XE can be denoted as: 

H = ci (Ts  - Ta)/ra  

XE = c2  (e s - ea)/ra 

where s is the slope of the saturation vapour pressure 

curve, y is psychrometer constant, e is ratio between 

molecular weight of water vapour and dry air, p a  is 

density of moist air and pa  is atmospheric pressure. 

(4.2) 	For modeling purposes there is a preferente to 

express evaporation as a volume flux, hence: 

(4.3) 

Evol = Emass/pw 
	 (4.6) 
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where ów  is density of water. 

one has: 

4.2.2. Boundaries of the atmosphere - crop 

system For Evol expressed in mm.d-1 

Evol = Emass/(Pw x 86.4) 
	

(4.7) 

The transpiration by crops mainly takes place 

via the stomata, which causes an additional resis-

tance to ra, often denoted as the canopy resistance, 

rc . Incorporating rc in the Penman equation leads to 

an equation for any given cropped surface (MONTEITH, 

1965; RIJTEMA, 1965): 

E - 	
s *Y 

 E 	(kg.m-2 .s-1 ) 	(4.8) 
s -E y(1 + r c/ra) w 

The symbol E now stands for evapotranspiration rate 

and Ew  for the evaporation rate of a wet surface. The 

magnitude of Ew  can be computed with eqs. (4.4) and 

(4.5) by substituting proper values for Q*  and ra . 

In case soil water conditions have no influence 

on E, it is defined as potential evapotranspiration, 

E
P 
 . For computation of E

P 
 only meteorological data 

and values of re are required. 

The crop is operating 'actively' in the transpi-

ration process because the behaviour of the stomata 

and consequently r c  is influenced by soil water sta-

tus and atmospheric demand (MONTEITH, 1975; SLATYER, 

1967). A model that takes into account changes in the 

heat balance of the crop surface caused by changes in 

water supply by the root zone, has been developed by 

SOER (1977). In this model energy balance equations 

are solved in an iterative way. Although the crop is 

modeled as a single-layer one, the model still needs 

data for time periods less than one hour and is there-

fore less suitable for use in water management models. 

A more indirect feedback mechanism is that crops 

show a reduction in growth when transpiration is re-

duced. By detailed modeling of growth processes it is 

in principle possible to take into account this form 

of feedback. The changes in crop physiology and hence 

marphology are slight and in this study they will be 

considered independent of the soil water status. 

For evaporation from a wet soil eqs. (4.4) and 

(4.5) can be applied, taking into account the rough-

ness of the soil surface and the soil cover fraction, 

Sc . The evaporation from a dry soil is governed by 

the atmospheric demand and the hydraulic conductivity 

of the upper few centimeters of the soil. The mathe-

matical description of this process is so complicated 

(MENENTI, 1982) that it is difficult to use it in 

hydrological models. Therefore a parametrical ap-

proach has been followed to obtain a solution (see 

Chapter 5). 

In order to be able to describe the exchange of 

water between the atmosphere - crop system and the 

groundwater system one has to take into account the 

following processes: 

- interception of rainfall 

- infiltration 

- surface runoff 

- water uptake by roots 

Part of the rainfall P is intercepted by the crop 

cover. The amount of intercepted water depends on both 

soil cover and precipitation rate. An empirical rela-

tion has been given by BELMANS et al. (1983). Evapo - 

ration of intercepted water can be derived from eqs. 

(4.4) and (4.5). 

The actual infiltration rate, f i , is calculated 

as: 

f. =P if f. 	f 1 	n 	1 	p 

fi  = f if f.l  > f pp 

where f
P 
 is maximum possible infiltration rate (mm-d -1 ) 

and Pn is net precipitation, to be calculated as: 

n= 
P - . Ei 	 (4.11) 

where E i  is the evaporation rate of intercepted water. 

Neglecting the storage of water on the soil sur-

face, the surface runoff, f r , is calculated as: 

f .0 
	

if 	fp 	 (4.12) 

fr  P - f if f i  > f n 	 (4.13) 

The water uptake by plant roots is strongly in-

fluenced by soil water conditions in the root zone. 

This process will be dealt with in more detail in 

Paragraph 4.3.3. 

4.2.3. Meteorological and crop data 

At an experimental site of which the location is 

given in Fig. 3.8 the meteorological data: wind speed, 

precipitation, net radiation, air temperature and 

relative humidity were recorded continuously during 

the years 1980 and 1981. In order to obtain data for 

other years, these recordings (except for precipita-

tion) were averaged per day and campared with corre-

sponding measurements at the main meteorological sta-

tion Eelde, some 40 km northwest of the pilot area. 

The parameters a l , b., and r2 of the linear regression 

(4.9) 

(4.10) 
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C 
0 
15 0.6 
0 

a) 

o 0.2 

Table 4.1. Parameters in the linear 
regression equation y = aix + bl, 
relating meteorological data mea-
sured in 'De Monden' (y) with data 
of Eelde (x). Values between brack-
ets hold when y should have been 
measured in helde 

Harvest 
16/9 

r2 Number 
of data 

Wind speed (n•s -1 ) 0.61 (0.72) 0.53 ( 	0.0) 0.83 252 
Temperature ( °C) 1.01 (1.00) -0.21 ( 	0.0) 0.99 191 
Relative humidity (%) 1.01 (1.00) -3.3 ( 	0.0) 0.89 589 
Net radiation (J•cm -2 •d-1 ) 0.476 (0.52) 52 (52.0) 0.91 127 

10 	per 3 weeks during the growing season the following 

data were collected: soil cover, crop height, leaf 

area index, rooting depth, total dry matter produc- 

0.6 	 tion and dry matter production of harvestable parts. 

From these data the soil cover fraction and crop 

height of potatoes, winter wheat and sugar beets 

0.2 	during the growing season were derived (Fig. 4.2). 

a 1 
	 b 1  

O 
1.0 

0.6 

0.2 

4.3. THE UNSATURATED ZONE -1 1.0 16/10 
-- Crop height 

Soil cover 
fracfion 

For crop growth the sub-system of the unsaturat-

ed zone is the most important. Being only interested 

in (changes in) water uptake secondary effects like 

changes in nutrient uptake are neglected in this 

study. 

0 
-"d 

-0.6P 
D-
M 
(0 
rt-  

- 0.2 

4.3.1. General theory 
1 	1 	1 

1.0 

For each soil there exists a relation between 

the pressure head, h
P 
 (cm), and the soil water con- 

tent, e (n3 .1n-3), so: 

(4.15) 0 = f (h p) 
P 

0.6 

0.2 

Fig. 4.2. Average course in time of soil cover frac-
tion and crop height of potatoes (a), sugar beets 
(b) and winter wheat (c) 

equation: 

Flow of water in the unsaturated zone of impor-

tance for the problem under discussion is restricted 

to vertical upward and downward flow only. These 

types of flow can be described by the one-dimensional 

differential equation: 

ded 	dh, 

dt = 	[K(hp) ( 6z,' + 	- S 	 (4.16) 

where S is a 'sink' term representing water uptake by 

plant roots. Hysteresis was neglected because the most 

important is drying out of the soil during the growing 

season. 
y = a l x + b l (4.14) 

where y stands for the data in the pilot area and x 

for the corresponding data for Eelde are given in 

Table 4.1. It should be remarked that the surface cov-

er in 'De Monden' was different from that in Eelde. 

On the same experimental site data on crop growth 

of potatoes, sugar beets and winter wheat were collect-

ed during the period 1978-1981. On the average once  

4.3.2. Boundaries of the unsaturated zone 

The 'upper' boundary of the unsaturated zone 

system is the atmosphere - crop system. The rate of 

water uptake equals the rate of transpiration. The 

actual rate of transpiration can be calculated from: 

z  
Et =,! S dz if Et  < Et,p 	 (4.17) 
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Vm 7 
93-120 cm 

	

4-10 z 	 .Evaporabon method 

	

3 	----- Bloemen 
Brooks and Corey 

10 -4  

Et = Et,p if Et > Et,p 
	 (4.18) 

where zr  is rooting depth, S the volume of water tak-

en up by the roots per unit volume of soil per unit 

time and Et,p is potential transpiration rate, FEDDES 

et al. (1978) consider the sink term S as a function 

of the pressure head in the root zone, so S = f(h
P 
 ). 

The 'lower' boundary of the unsaturated zone is 

the phreatic surface. The position of this surface is 

varying with time. In the next chapter the way this 

problem was solved, will be elaborated. 

4.3.3. Soil physical properties 

For a mathematical description of water movement 

in the unsaturated zone information is needed about 

soil water retention and hydraulic conductivity. 

BOUMA and Van HEESEN (1981) showed that for sandy 

soils a regular soil map can be used for a soil phys-

ical classification. 

For the research area the following procedure for 

determining soil physical properties was followed. On 

the basis of the available soil map 12 sampling spots 

were selected. At each spot per layer separate samples 

for the determination of retention curves, hydraulic 

conductivity curves and granular composition were col-

lected. Mbasuring of the soil physical properties was 

performed in the laboratory. Water retention curves 

were determined with the method described by STAKMAN 

et al. (1969). The determination of the K(h
P 
 )-rela- 

tionships was done by the evaporation method (BOELS 

et al., 1978), the computation method based on tex- 

ture and organic matter content (BLOEMEN, 1980a,b) 	 -400 

and the computation method of BROOKS and COREY 

1964). Fig. 4.3. K(hD)-relations for sandy layers obtained 
with three different methods 

Table 4.2. Soil physical properties of the different layers distinguished in the research area 'De Monden' (Ps  is 
density of soil) 

Volume water content (0) at h (m) 
 

0.00 -0.10 -0.32 -0.63 -1.00 -2.00 

-200 
h p  (cm) 

1 	root zone: <15% org. matter 	48.9 47.4 45.8 44.0 41.6 36.4 
2 	 15-20% org. matter 57.4 54.4 52.5 50.4 48.2 44.1 
3 	 >20% org. matter 	64.0 60.0 57.1 54.0 50.9 46.3 
4 	fen peat p, = 230 kg•m-3 	88.4 86.4 82.6 78.5 75.2 69.5 
5 	 ps  = 250 kg•m-3 	78.5 75.5 68.0 63.1 59.8 54.4 
6 white loose peat ps  = 

140 kg•m-3 	 89.8 82.8 77.3 70.8 66.0 58.7 
7 	high bog peat p, = 170 kg•m-3  85.0 82.0 77.9 74.3 68.9 62.0 
8 	fossile 0-horizon 	 85.6 83.6 81.4 81.0 79.7 76.9 
9 	Lacustrine organic-mineral mud 46.6 45.6 44.9 44.1 43.2 41.6 

10 	highly loamy sand 	 40.2 37.7 36.1 34.0 31.6 27.2 
11 medium loamy sand I 
12 	medium loamy sand II 	 37.8 34.5 31.8 27.6 21.1 16.1 
13 medium loamy sand III 
14 slightly loamy sand I 

35.0 32.0 29.9 26.0 19.3 12.4 15 slightly loamy sand II 

= 

-5.00 
P 

-25.00 

Parameters in 

-160.00 	
eq. 	(4.19) 

 

	

0.5Ks 	ha/r 

	

(m-d-1 ) 	(m) 

ns 

(-) 

28.8 19.3 14.1 
37.0 22.9 16.3 0.86 0.075 1.46 
39.3 24.7 17.7 
57.2 35.5 22.3 0.0026 0.260 1.62 
46.5 32.7 24.4 0.00185 0.35 1.57 

50.1 26.4 16.4 0.0044 0.24 1.86 
54.0 33.7 22.3 0.0026 0.26 1.62 
72.1 42.0 26.8 0.0145 0.48 1.41 
39.2 28.9 14.8 0.0282 0.27 1.41 
22.5 15.7 8.4 0.57 0.08 1.81 

0.77 0.07 2.62 
9.4 7.7 4.1 0.80 0.06 2.20 

0.80 0.08 3.67 

8.0 4.2 2. 5 0 . 90 
1.05 

0.07 
0.06 

3.46 
3.22 

Number 
	

Description 
soil 

layer 
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h n 
K(h

P 
 ) = 0.5K ( 	a  ) s  

s r.hp  
(4.19) 

Table 4.3. Soil physical properties of soil physical units changed by soil improvement (between brackets the 
corresponding mapping units of Soil Map 1:50 000) 

Soil 
physical 

unit 

Depth 
(cm below 

soil 

Volum. water content (8) at hp  (m) = 

0.00 -0.10 -0.32 -0.63 -0.100 -0.200 -0.500 -25.00 -160.00 

Parameters in eg. 	(4.19) 
0.5Ks 	ha/r 	ns  

surface) (m-d-1 ) (m) (-) 

IX 0- 40 68.5 63.5 60.3 56.6 52.6 47.5 38.5 24.5 16.0 0.49 0.06 1.48 
(iVz,iVp) 40- 80 70.9 66.9 63.2 58.9 53.8 48.0 40.6 24.1 15.2 0.23 0.08 2.16 

80-120 58.5 56.0 51.9 49.4 44.0 38.6 31.7 20.4 12.8 0.37 0.06 2.22 
>120 37.8 34.5 31.8 27.6 21.1 16.1 9.4 7.7 4.1 0.80 0.08 3.67 

X 0- 40 60.3 57.3 53.1 49.5 45.8 41.0 33.7 22.8 16.3 0.52 0.06 1.47 
(iWz,zWz) 40- 65 48.2 45.5 42.5 39.3 35.4 31.1 25.4 18.5 11.2 0.42 0.04 1.62 

65- 90 46.4 43.2 39.9 36.0 30.9 26.0 19.4 14.3 9.0 0.50 0.04 1.82 
>90 37.8 34.5 31.8 27.6 21.1 16.1 9.4 7.7 4.1 0.80 0.08 3.67 

XI 0- 40 57.6 54.6 51.2 47.9 44.3 39.7 32.5 21.6 15.3 0.59 0.07 1.48 
(iWp) 40- 90 55.5 52.4 49.0 45.4 40.6 35.9 29.4 19.6 12.7 0.40 0.07 2.22 

>90 37.8 34.5 31.8 27.6 21.1 16.1 9.4 7.7 4.1 0.80 0.08 3.67 

Because of failures during the laboratory tests, 

comparison of results obtained with the different 

methods could be carried out only for a limited num-

ber of data. In Fig. 4.3 data for sandy layers are 

shown. For peaty layers the evaporation method did 

not work at all. For sandy layers (less than 30% or-

ganic matter) the method of Bloemen gave results 

which are close to measured data. Because for each 

sampled layer soil texture and organic matter content 

were known, it was possible to establish a K(h 
P 
 )-re- 

lationship by means of this method. The results, to-

gether with data on water retention are given in 

Table 4.2. The parameters given in the table refer to 

the equation  

was determined from the weighted average of proper-

ties of the original layers. For the K(h p)-relation-

ship this is somewhat more complicated. BLOEMEN 

(1982) quantified these changes by calculating the 

weighted average hydraulic conductivity of the orig-

inal layers for different h
P 
 . Next he computed or- 

ganic matter content and textural analysis on the 

basis of the properties of the original layers and 

with these data parameters were derived by curve 

fitting. This procedure was applied to those soil 

types that were potentially improvable. In Table 4.3 

the resulting soil physical properties of three im-

proved physical units are given. 

When discussing model verification and sensi-

tivity analyses, more will be said about the uncer-

tainties in soil physical properties. 

where Ks  is saturated hydraulic conductivity, ha  is 

air entry pressure head and r is a factor for hys-

teresis (BLOEMEN, 1980a,b). 

Next the sequence of these layers for each soil 

type of the soil map 1:50 000 was established. Mapping 

units that showed similar sequences were combined and 

in this way the soil physical properties of the whole 

area could be classified in 8 soil physical units. 

By soil improvement soil layers with different 

soil physical properties are created. In soil mapping 

soil improvement, except sand dressing, was not in-

cluded. As was indicated in the previous chapter, 

soil improvement has been applied on a large area. 

Therefore its soil physical consequences must be es-

timated. The retention curve for these mixed soils  

4.4. THE SATURATED GRCUNDWATER SYSTEM 

4.4.1. Mathematical background 

Flow of water in the saturated zone can be de-

scribed by the general three-dimensional differential 

equation: 

S = 
6h 	6 ,, 6h, 	6 ,, 6h, 	6 ,, 6h, 

0 	- (. 1‘- s ot 	6x x (sx 	(Sy y 6y 	(5z 	z 6z - q 
(4.20) 

where Ss is the volume of water stored per unit vol-

ume of soil per unit change in head h and q repre-

sents the extraction rate of water. 
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If the water flow in a groundwater basin is 

schematized as horizontal flow in permeable lay-

ers (aquifers) and vertical flow in layers with low 

penneability (aquitards), a simplification of the 

general flow equation is possible. In a confined 

aquifer eq. (4.20) becomes: 

	

Sh 	SSh, 	r, 	1h, 

	

Sa (St 	(Sx '-xu  (Sx' 	dy 	- 
qD (4.21) 

where D is thickness of aquifer and Sa  is volume of 

water stored per unit area per unit change in head. 

In an aquitard, eq. (4.20) becomes: 

, 1h 	(5 	111, Ss  — = — 	- q s (St 	dz 	z dz 

With the given equation the groundwater flow 

can be calculated when the parameters in these equa-

tions and the boundary conditions of the problem are 

known. 

4.4.2. Boundaries of the saturated system 

The upper boundary of the saturated system is 

formed by the phreatic groundwater table, except 

when there is a perched water table. In steady-state 

situations, the flux through this boundary, v f , can 

be derived from the water balance of the unsaturated 

zone; in nonsteady situations, vf  is varying in time 

and difficult to detennine. 

In the area under consideration water will also 

flow laterally through the external boundaries. There-

fore hydrological measures in the area itself as well 

as measures outside the area can influence tiqe loss 

or gain. In order to account for this flow a specifi-

cation of the boundary conditions is necessary. This 

can be done in three different ways: 

- by the Dirichlet condition: the pressure head at the 

boundary is specified as a function of time 

h(xB , yB , t) = hB (t) 	 (4.23) 

- by the Neuman condition: the flux is specified as 

function of time 

v(xB ,  YB , t)  = vB (t) 
	

(4.24) 

- by the Cauchy condition: the flux is a function of 

the hydraulic head 

v(xB , yB , t) = f(hB) 	 (4.25) 

Because open water levels in the various sections 

of the area are different, a number of internal bound-

aries of the saturated system has to be distinguished. 

The mass flow through these boundaries will be de-

scribed in detail in Paragraph 4.6.1. 

4.4.3. Geo-hydrological schematization 

Quantification of the flow in the groundwater 

system requires that the soil profile is divided in-

to aquifers and aquitards. This is done on the basis 

of the geological information described in Chapter 

3, additional information on hydrological parameters 

and on own field research. 

The geo-hydrological schematization following 

from geological information is given in Fig. 4.4, to-

gether with a rough indication of KD and c-values, 

obtained from textural properties of the various lay-

ers. 

Piezometer observations learned that Holocene 

deposits, as far as present, are situated in the un-

saturated zone so there was no need to distinguish 

the Holocene deposits as a separate layer in the sat-

urated system. 

The upper (phreatic) aquifer is formed by the 

fine sands of the Twente Formation with a thickness 

of about 15 m. The K-value varies according to 

HOOGHOUDT (1943) between 1.3 and 4.5 m.d 1 . Similar 

values were found in the upper two meters from field 

measurements with the auger hole method. Using an 

average value of 3.2 m.d-1  and taking into account 

the magnitude of the layer yields the map of the K i Di

-values shown in Fig. 4.5. 

Below the Twente Formation on some locations 

continental Eemian is forming a resistive layer. 

Available well-logs did not allow to deduce a c-value 

map of this layer. Therefore an indirect method was 

GEOLOGY 	 GEO-HYDROLOGY 
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middie aquifer 
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Fig. 4.4. Geo-hydrological schematization based on 
geological information 

(4.22) 
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+ Drillings of Hooghoudt 
	

• Other drillings 

Fig. 4.5. Transmissivity map of the upper aquifer 

used. In the research area the hydraulic head in the 

upper aquifer was measured at 52 places. For monitoring 

the deeper aquifers at 10 locations piezometers at 20 

and 60 m below soil surface were installed. Water bal-

ance data for the upper aquifer and differences in 

hydraulic head resulted in a c-value map of the Eemian 

Formation as given in Fig. 4.6 ( an KEULEN, 1982). It 

should be emphasized that this is only a first esti-

mate, because relatively small errors in measured 

flows or hydraulic heads result in relatively large 

errors in c-values. 

The middle aquifer consists of coarse material 

of the Drente Formation. Based on the analysis of 6 

borings an average K-value of 25 m.d -1  was establish-

ed (POMPER, 1981). Together with the thickness of 

the aquifer as found from these borings, this gave 

the transmissivity map of Fig. 4.7. 

Below the Twente Formation fine clayey sands 

and clays of the Peelo Formation were found. Direct 

determination of the c-value of this layer was not 
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100 Isoline of c 1 =100 days 100 

 

 

Mean c 1 -value per section 

Fig. 4.6. Values of the vertical resistance cl of the aquitard below the upper and middle aquifer as derived 
from water balance data and observed head differences 
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Fig. 4.7. Transmissivity map of the middie aquifer as derived from borings 

25 



- 500 — Isoline of c2=500 days 
	

225 Mean c2-yalue per section 

Fig. 4.8. Vertical resistances of the aquitard between the middle and lower aquifer as derived from water balance 
data and observed head differences 

possible. The same procedure as applied for the Eemian 

Fonnation resulted in a first estimate of the c2 -val-

ue of this aquitard given in Fig. 4.8. 

The lower aquifer, formed by coarse old Pleisto-

cene material of the Fonnations of Urk, Enschede and 

Harderwijk, is the most important aquifer, the trans-

missivity of which is shown in Fig. 4.9 (POMPER, 

1981). The basis of the saturated system is formed by 

the clays of the Tertiary Breda Fonnation. 

Data on the storage coefficient Sa  of the dif-

ferent layers are very scarce. From the analysis of 

a penning test, a value of 2.75 x 10 -4  for the lower 

aquifer has been derived (POMPER, 1981). The thick-

ness of this aquifer being approximately 60 m, this 

results in a value for the specific storativity of 

about 5.0 x 10-6 m-1 . Taking a total thickness of all 

aquifers of 120 m and a maximum difference in hydrau-

lic head of 2 m, the storage capacity in the saturat- 
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Fig. 4.9. Transmissivity map of the lower aquifer (after Pomper, 1981) 

ed system is in the order of 1.2 x 10 3  m, a value 

two orders of magnitude lower than the phreatic stor-

age coefficient of about 0.10. Therefore the storage 

properties of the middle and lower aquifer as well 

as those of the aquitards in between can be safely 

neglected. 

4.5. ZIE SUBFACE WATER SYSTEM 

4.5.1. Water flow in open watercourses and 

over weirs 

The water flow in open watercourses can be de-

scribed by the following equations: 

- equation of motion (Saint-Venant) 

2 
( 	+ aA_ 	AwSe  = 0 Sx 	-av Aw  	Sx + g  (4.26) 
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- continuity equation 

3.)7  + TE— = N 
d

AW n 	 (4.27) 

where Q is discharge, y is water depth, Aw  is wet-

ted area, av  is coefficient depending on velocity 

distribution and Se  is slope of energy line, H e . 

The energy line can be split into: 

He  =
2/2g + Pe/pwg + z 
	

(4.28) 

where vf, is average fluid velocity, Pe  is pressure 
energy per unit of volume and p w  is density of water. 

The slope of the energy line is the result of 

the slope of the bottom of the watercourse, S , and a 

loss of head caused by the friction resistance, Sf , 

so: 

Se = So + Sf 
	 (4.29) 

with d is about 0.33 and y is depending on the state 

of maintenance of the watercourse. 

The flow rate Q over a broad-crested weir with 

a depth of flow equal to the critical depth, y c , 

(Fig. 4.10) can be calculated from: 

Q = Cd  Cv 	g) 	b h l  2 2 	0.50 	1.50 	 (4.32) 

where Cd is a dimensionless discharge coefficient to 

account for viscous effects, increased turbulence and 

non-uniform velocity distribution, C v  is an approach 

velocity coefficient to account for the velocity head 

in the approach channel, b is effective width of the 

weir, and h l  is upstream head above crest. For the 

determination of Cd and Cv tables are available (BOS, 

1976). 

For any particular weir the stage discharge re-

lation between discharge q and upstream head h l  can 

be written as: 

Sf can be calculated with the empirical Manning equa-

tion: 

q' = C' hn  1 (4.33) 

where q'is discharge per unit width, CJ I  is discharge 

(4.30) 	coefficient and n is a constant. In the present study 

this equation will be used for weirs and inlet struc-

tures. 
where nm  is the roughness coefficient of Manning and 

R is hydraulic radius. The value 1/n m  is often re-

ferred to as the conveyance factor KM. The value of 

KM  depends on the roughness of the walls of the water-

course and, consequently, on the presence and type 

of water weeds. The parameter Km  sometimes is ex-

pressed as a function of water depth (WERKGROEP AF-

VOERBEREKENINGEN, 1979): 

Km  = yh'S 
	

(4.31) 

4.5.2. Hydraulic properties of watercourses 

and weirs 

In the design of the main watercourses, permis-

sible backwater effects in each section have been tak-

en into account (Table 4.4). Kring water supply the 

flow volumes are below or equal to 2.5 mm.d 1 , so that 

the main watercourses are oversized for water supply 

and backwater effects can be neglected. 

Section  

M-24 M-28 0-32 0-36 0-38 

0.30 0.65 0.45 0.55 0.40 

Fig. 4.10. Flow pattern over a broad-
crested weir (after Bos, 1976) 

Table 4.4. Backwater effects (m) in 
a number of sections at a discharge 
intensity of 10 mm•d-1  as taken into 
account for the design 

W-14 W-16 W-24 M-22 

Backwater effect 1.00 0.60 0.40 0.70 
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Table 4.5. Parameters for the different weirs and in-
let structures in 'De Monden' (for location see Fig. 
3.8) and ranges of h l  (cm) for which they are valid 

Number C' d b(m) n h 1  -range 

W-14 winter 1.88 4.28 1.595 
summer 2.17 4.28 1.50 

W-16 1.67 3.00 1.5 <3.0 
1.76 3.00 1.5 3.0 8.0 
1.79 3.00 1.5 >8.0 

W-18, W-22, W-24 0.205 1.30 3.5 <2.5 
W-26 0.815 1.35 2.00 2.5 6.0 

1.817 1.40 1.53 >6,0 
W-20 1.600 1.40 1.50 

M-22 winter 1.88 4.76 1.595 
2.17 4.76 1.510 

M-24 0.64 4.28 1.979 
M-26 0.205 4.28 3.50 <2.5 

0.815 4.28 2.00 2.5 - 	6.0 
1.87 4.28 1.53 >6.0 

M- 28 2.716 2.75 1.669 
M-34 0.205 1.50 3.50 <2.5 

0.815 1.50 2.00 2.5 - 	6.0 
1.87 1.60 1.53 >6.0 

M-36, 0-40, 0-42 0.205 1.30 3.50 <2.5 
0-44, 0-46 0.815 1.35 2.00 2.5 - 	6.0 

1.87 1.40 1.53 >6.0 

0-32 winter 1.88 4.28 1.595 
summer 2.17 4.28 1.510 

0-34 0.22 4.28 3.00 <3.0 
0.85 4.28 1.82 3.0 - 	10.0 
2.15 4.28 1.51 >10.0 

0-36 0.205 1.75 3.5 <2.5 
0.815 1.75 2.00 2.5 - 	6.0 
1.87 1.85 1.53 >6.0 

0-38 0.205 1.50 3.50 <2.5 
0.815 1.50 2.00 2.5 - 	6.0 
1.87 1.65 1.51 >6.0 

W-26i, M-34i 1.67 1.00 1.50 <3.0 
M-36i 1.76 1.00 1.50 3.0 - 	8.0 

1.79 1.00 1.50 >8.0 
0-40i 1.67 1.50 1.5 <3.0 

1.76 1.50 1.5 3.0 - 	8.0 
1.79 1.50 1.5 >8.0 

0-42i, 0-44i, 1.67 0.50 1.5 <3.0 
0-46i 1.76 0.50 1.5 3.0 - 	8.0 

1.79 0.50 1.5 >8.0 
W-22i Pump 

With the exception of W-16 which is broad-crest-

ed, all 20 weirs in the main watercourses are sharp-

crested. Most weirs have a tooth-shaped crest (Fig. 

4.11). When the upstream water head h l  is below the 

tops of the teeth, the exponent n in eq. (4.32) de-

pends on both the angles ew  of the teeth and aw  of 

the weir itself. 

Because the weirs are not constructed for mea-

suring but for regulating purposes, the only way to 

obtain correct stage discharge relations is to mea-

sure in situ. The procedure and results of this field 

research are described by HCM1A (1981). The resulting 

discharge formulas have exponents around 1.6. 

The 10 inlet structures and W-16 are of the 

broad-crested Ravijn-Vlugter type. Because the stage 

discharge relation for this type of weirs is accurate- 

Fig. 4.11. Schematic representation of the flow sit-
uation over an adjustable weir with tooth-shaped 
crest 

ly known, no field measurements were needed. A sum-

mary of the parameters for the stage discharge rela-

tion of all weirs and inlet structures is given in 

Table 4.5. 

The drainage system at farm level is formed by 

the small canals ('wijken') and main ditches ('zwet-

sloten') dug during the reclamation process. Applica-

tion of Manning's formula to well-maintained small 

canals shows that hardly ever any backwater effect 

occurs. With the computer program DIWA for permanent 

discharge (GELOK, 1970) also a situation with heavy 

growth of water weeds has been analyzed. The lowest 

known value for y = 10 and d = 1/3 in eq. (4.33) 

resulted in the empirical relationship: 

Aho  = 0. 10 vd 1 / 2 
	

(4.34) 

where o is backwater effect in the small canals and 

vd  flux to these canals. In the field sometimes much 

higher values were observed (Table 4.6). This discrep-

ancy is due to the presence of sills. Sometimes a too 

high position of the outflow culvert was observed, but 

in most cases the bottom of the small canals was raised 

by the debris of weeds. Because after completion of the 

reconstruction plan these sills will be removed, such 

large backwater effects will not occur anymore. 

The dimensions of the main ditches are such that 

same backwater effect under drainage conditions can 

be expected. Because most of these ditches are filled 

or will be filled in the near future no attention is 

paid to the flow process in these ditches. 
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Table 4.6. Observed and calculated backwater effects 
in small canals ('wijken') in the period 21 to 23 
July 1980. For numbering of sections, see Fig. 3.8 

Section Discharge 
intensity 

115.d1)  

Observed 
Aho 

Calculated with 
eq. 	(4.34) 

W-14 7.4 -0.05 0.27 
W-16 7.4 0.20 0.27 
W-18 8.7 0.13 0.29 
W-24 5.1 0.03 0.22 
M-22 3.0 0.02 0.17 
M-24 4.8 0.13 0.22 
M-26 4.0 0.05 0.20 
M-28 4.2 0.14 0.20 
M-36 2.8 0.28 0.17 
0-34 3.2 0.44 0.18 
0-36 3.9 0.55 0.20 
0-38 4.3 0.34 0.21 
0-40 5.2 0.25 0.23 

4.6. INTERACTION BETWEEN GROUNDWATER AND SURFACE WATER 

SYSTEM 

4.6.1. Theory 

In solving groundwater flow problems a watercourse 

is a boundary where the hydraulic head is prescribed. 

In modeling an area it is therefore, in principle, 

possible to incorporate watercourses as fixed bound-

aries. Due to their large number, however, this would 

lead to a very complicated model. In order to get a 

simpler solution the influence of open watercourses 

can be replaced by functions describing the relation 

between flow intensity and difference in head between 

the open water and the groundwater. One of the possi-

bilities in this respect is the use of the so-called 

drainage resistance (ERNST, 1954, 1962). Accovding 

to this author the drainage resistance T for flow be-

tween a saturated groundwater system and parallel 

ditches in a steady-state situation is: 

T 
hf' m - ho 

vf  

where hf m is the height of the phreatic surface mid-

way between the ditches, ho  is open water level and v f 

 is vertical flux density through the phreatic surface. 

Sometimes it is more convenient to use: 

T= 1 hf-ho  
T1 	vf  f 

(4.36) 

where hf is level of phreatic surface averaged over 

the area and nf  is a factor depending on the shape of 

the phreatic surface, defined as: 

L 

L jr (hf (z) - ho)dz 
0 

nf  

where L is the distance between watercourses. 

The drainage resistance can be split up into 

four components: 

T = Tv + Th + Tr + Te 
	 (4.38) 

where Tv' Th , Tr  and Te are vertical, horizontal, 

radial and entrance resistance, respectively. Each 

component causes a loss in head proportional to the 

resistance, so: 

hf m  - ho  = Ahv  + Ahh  + Ahr  + Aho 	 (4.39) 

The loss in head caused by the vertical resis-

tance is (ERNST, 1976): 

vf  
Ahv 	(hf ,m - ho) 

Even with vf = 0.01 m.d -1  the vertical head loss 

is negligible as long as there are no extreme low 

penneabilities, say K z  < 0.5 m•d-1 . 

The horizontal resistance is defined as: 

L
2 

Th   E8KD (4.41) 

The radial resistance T r for a homogeneous aqui-

fer is (ERNST, 1962): 

, 4D Tr=- in --- 7K 	uB  

where D is thickness of the aquifer and Bw  is wetted 

perimeter of the watercourse. 

Due to deposition of debris and fine material 

(silt) on the bottom of the drainage canal one can 

expect an entrance resistance. Little, however, is 

known about the magnitude of this resistance. Field 

measurements showed that the part of the side slopes 

submerged during sub-irrigation has a lower resis-

tance than the bottom. Experiments elsewhere indi-

cate also that the resistance depends on the direc-

tion of flow. During sub-irrigation the resistance 

can increase because of sedimentation of fine parti-

cles. 

The formulas for the different components of the 

drainage resistance given above are only valid for 

certain•conditions. In the research area D is at 

least 15 m. With a variation in the height of the 

phreatic surface of less than 1.5 m, the assumption 

(4.35) 

hf ,m  - ho  
(4.37) 

(4.40) 

(4.42) 
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(4.43) 
APn 

T 	
A(hf,m - ho ) 

" - 4.6.2. Field measurements 

of D being constant is reasonable. 

A representative value for B of a small canal 

in the case of drainage and sub-irrigation is 7 and 9 

m, respectively. This situation gives a 13% smaller 

Tr in the case of sub-irrigation. On the other hand 

a seepage surface may be present above the water lev-

el in the canals in the case of drainage causing an 

increase of Bw . 

Because of the above uncertainties, it is better 

to use actually measured data on drainage resistances. 

In the next paragraph such data obtained from field 

measurements on this subject will be dealt with. 

Because the main source of error is the discharge 

a third method, called the 'differential approach', 

was applied. To eliminate errors in the discharge 

measurements it is supposed that the difference in 

discharge per section in two periods is equal to the 

difference in effective precipitation in those peri-

ods, P. The latter is supposed to be known accurate-

ly. Implicitly it is assumed that the regional see-

page pattern does not change with the effective pre-

cipitation. The systematic error in the averaging 

process was eliminated by taking the difference 

A(hfm - ho) in the two periods considered, so: 

Because the small canals ('wijken') foren by far 

the most important part of the drainage system and 

their mutual distance and geometry is very uniform, 

one can expect a rather uniform value of T throughout 

the area. Discharge and open water levels of the dif-

ferent sections and phreatic levels midway between 

the canals were measured during winter periods 1979/80 

and 1980/81. Averaging hf m  and ho  gave a first esti-

mate of T. This resulted, however, in a large vari-
ability in T, as is shown in Table 4.7. A better way 

is to compute T-values for each measured h f m  and 

ho separately and to average these T-values. In this 

way a second estimate of the drainage resistance is 

obtained, listed as T' in Table 4.7. A drawback of 

this method is that the obtained data pertain to 

certain localities only. 

Table 4.7. Drainage resistance per section deduced 
from discharges and groundwater tables 

Sec- 
tion 

T (from 
averag- 
big data 

(d) 

T' (from mea- 
surement at 
one place) 

(d) 

T" (differ- 
ential 

approach 

(d) 

Best 
estimate 

(d) 

W-14 200 - 200 
W-16 330 130 90 150 
W-18 - 370 300 
W-24 380 240 180 200 
W-26 350 390 350 350 
M-22 60 210 90 150 
M-24 200 150 200 
M-26 100 50 150 
M-34 150 150 150 
M-36 350 180 200 
0-32 100 170 90 150 
0-34 300 250 300 250 
0-36 300 250 
0-38 100 170 150 
0-40 150 170 150 
0-42 320 440 400 350 
0-44 440 300 
0-46 170 150 

A best estimate of the drainage resistance per 

section has been obtained by assigning weighing fac-

tors of 0.4, 0.6 and 1.0 for T, T' and T", respectiv-

ely. The results are bounded within preset physical 

boundaries (150 	350) and rounded off to the 

nearest 50 (see fourth column of Table 4.7). 

No significant differences were found between 

the area with 'wijken', the area near the southeastern 

border and the 'sandy' section in the east without 

'wijken'. Evidently the behaviour of the drainage 

system in the latter two areas is comparable with 

that in the 'wijken' area. 

To obtain an insight in the various parts of the 

drainage resistance detailed measurements in three 
sub -areas have been made (see WERKGROEP OPSCHONEN 

WIJKEN, 1982). In the first sub-area the open wa- 

ter level in 4 'wijken', the phreatic levels at 2, 

10 and 80 m (denoted as h 1 , h10  and bk o), the hydraulic 

heads in the middle and lower aquifer (hm  and hl 

 respectively) and the discharge from the 'wijken', Qw , 

were measured. Because of radial flow in the neigh-

bourhood of the cnal, the shape of the phreatic sur-

face between 2 and 10 m from the canal has to be a 

logarithmic curve. Extrapolation of this curve to the 

canal wall gives the loss of head due to the entrance 

resistance, Ahe . 

The distinction between radial resistance Tr  and 

horizontal resistance, Th , is difficult to make, be-

cause of the limited number of measuring points. A 

conservative estimate of the distance over which ra-

dial flow occurs, is 15 m. Neglecting the horizontal 

resistance in this region means that: 

Ahr = h15 - ho - Ahe 
	 (4.44) 

The data resulted in the following average val-

ues: Te  = 120 days, Tr  = 100 days, Th  = 20 days and 
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Table 4.8. Drainage resistances computed from open 
water levels and depths of groundwater in two sub-
areas, before and after cleaning of 'wijken' 

Before cleaning After cleaning 

winter sumer winter sumer 

T Te T 	T
e 

T T
e 

T T
e 

Sub-area 1 

wijk a - - - 	2 *  175 10 - .7 *  
wijk b - - 3 *  188 19 - 8* 
wijk c - - - 	16 *  175 26 - 13 *  

Sub-area 2 

wijk a 230 28 - 200 26 
wijk b 240 22 - 215 13 
wijk c 227 36 - - - - 	 18* 
wijk d 222 22 - - 14 *  

When T is not given because of lack of discharge data, 
Te  is expressed in percentage of the total resistance 
T 

T
v 
 = 0. This clearly shows the dominant role of en-

trance plus radial resistance. The average value for 

rl f  (eq. 4.37) is therefore also very high, viz. 0.9. 

In the other two sub-areas groundwater depth and 

discharge measurements were carried out during 1981 

and 1982 in order to investigate the effect of clean-

ing of 'wijken' on the magnitude of the drainage re-

sistance and the differente between drainage and sub-

irrigation conditions. In these areas piezometers were 

placed in two rows (1/4 and 3/4 from the outlet of the 

'wijken') at distances of 1, 3, 5, 10, 20 and 80 m. 

From the data values for T e' Tr and Th have been 

derived as described above (Table 4.8). On the basis 

of these data the following conclusions can be f drawn: 

- the value of Te  is not significantly influenced by 

cleaning and is in the order of 5 to 15% of the to-

tal resistance; 

- resistances under sub-irrigation are approximately 

10% lower than those under drainage conditions which 

can be explained by the larger value of the wetted 

perimeter; 

- the total resistance did not increase during a sub-

irrigation period of about 5 months. This does not 

confirm with the idea that under sub-irrigation 

conditions the resistance increases due to sedimen-

tation of fine material; 

- the shape of the phreatic level near the canals can 

be described very well by a logarithmic curve; 

- the shape factor, n f , of the phreatic level varies 

between 0.73 and 0.80, for both drainage and sub-

irrigation situation. The theoretical value for a 

radial flow with r e  = 4 m and Te  = 0.1 Tr  is 0.78; 

- the shape factor does not depend significantly on the 

direction of flow. This indicates that the radial re- 

170 m 

7 N-f3„,=7m 

K l = 3 m c1 -1 
 D1 .16 m 

Fig. 4.12. Representative cross-section for the 
drainage situation 

sistance is rather indifferent to variations in di- 

rection of flow as indicated by ERNST (1962). 

Based on the geo-hydrological situation a repre-

sentative cross-section for the drainage situation is 

depicted in Fig. 4.12. When the vertical resistance of 

the c l -layer is greater than 300 days, it may be con-

sidered to act as a hydrological basis and the theoret-

ical values of Tr and Th become: 

L 	4D T
r  = K 

 ln 	= 25 days 
Tr78.17, 

L 2 

Th E8KD 
 - 75 days 

Adding 20 days for Te  results in a total drain-

age resistance, T, of 120 days. 

In case of absence of the c 1 -layer one has to 

do with two layers with different hydraulic conduc- 

tivity. The radial resistance Tr  then can be computed 

from (ERNST, 1962): 

4D 

	

1 	1 K,T = K I T' + 1  ln 
Ir 	ir7 	7Bw 

(4.47) 

where Tr is the radial resistance of a semi-circular 

ditch for which D i /Bw  = 7/4. In this case Tr  is about 

43 days and Th  about 8 days so that T becomes 43 + 

8 + 20 = 71 days. 

The ratio radial resistance to horizontal resis-

tance is therefore largely depending on the presence 

of a c l -layer. Field data show a low value for Th  as 

compared with Tr , but the total resistance measured 

in the field is about three times the theoretical val-

ue. A reasonable explanation for this is anisotropy 

in the aquifer. An anisotropy factor of 4 and higher 

for fluviatile sediments like the Drente Formation 

has been reported by OLSTHOORN (1982). For 

■11■11M■IMIF 

(4.45) 

(4.46) 
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Table 4.9. Values for u, a and T from continuously 
recorded groundwater levels 

Location number 

1 0.100 0.09 111 
2 0.065 0.04 385 
3 0.062 0.09 178 
4 0.08 0.05 250 

Kx  /Kz  = 4 the following theoretical values are cal- 

culated: Tr  = 122 days and Th  = 64 days. With 20 days 

for the entrance resistance, the total drainage resis-

tance then becomes T = 122 + 64 + 20 = 206 days. Both 

the total resistance and the separate resistances 

now agree well with measured data. 

In the research area the phreatic level was re-

corded continuously at four places. These recordings, 

together with data on precipitation, were aimed to 

find values for the storage coefficient u of the 

phreatic aquifer. By selecting so-called depletion 

curves of the groundwater, i.e. curves for periods in 

which the water table drops after a period of high 

rainfall, the reaction factor a can be found by plot-

ting data on semi-logarithmic paper (De ZEEUW, 1966). 

For this purpose the relation 

a -  1  
Tunf  

(4.48) 

(see eqs. 4.36 and 4.37 for definition of ri f) is used. 

Table 4.9 gives the average values of u , a and "i" ob-
tained. They agree fairly well with the other field 

data except for location 2 which gives a higher T-

value. 
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5. MODELING OF THE HYDROLOGICAL SYSTEM 

5.1. INTRODUCTION 

In Chapter 4 a description of the hydrological 

system and different parameter values have been given. 

A prediction model for the hydrological system should 

be able to evaluate the effects of human-imposed 

Changes in the water management by means of a priori 

chosen variables. According to PRICKETT (1975) a 

model is defined as 'each method that can duplicate 

the response of a hydrological system'. Operation 

with such a model is called simulation. 

The most important problem, however, is to con-

struct a consistent system of sub-models and not fall 

in the pitfail of overmodeling. As FREEZE (1971) says: 

'complex models are open to the charge that their so-

phistication outruns the available data'. DE DONNEA 

(1978) pointed out that the impact of models in Water 

Resources Policy and Management is not proportional 

to the intellectual efforts involved. Also BAQ-NAT 

et al. (1980) mention this aspect as one of the rea-

sons for the existence of a gap between model appli-

cation and management. 
The translation of the decanposed hydrological 

system described in Chapter 4 into a computer program 

is, from a scientific point of view, not very inter-

esting. In general, however, much effort has to be 

put in it in order to make the model operational. 

Calibration of models is sometimes used to improve 

uncertain input data, but is also necessary to inves-

tigate the validity of the model as an image of real-

ity. 

The system decomposition and computer program 

formulation will be dealt with in this chapter. The 

calibration and verification of the model is subject 

of Chapter 6, the model results will be discussed in 

Chapters 7 and 8. 

5.2. SYSTEM DECOMPOSITION AND BOUNDARY CONDITIONS 

The sub-systems shown in Fig. 4.3 are coupled 

via external and internal boundary conditions. For 

the sake of simplicity, minor processes like surface 

runoff, interflow, precipitation on or evaporation 

from the surface water system and sprinkling from 

groundwater or surface water are neglected. All are 

of minor importance in the research area. This leads  

atmosphere / crop system 

1,  
unsaturated system 

T  
saturated system 

T  
surface water system 

Fig. 5.1. Simplified schematization of system decom-
position and relations between sub-systems 

to the scheme pictured in Fig. 5.1. The key to simple 

model formulation is the way of coupling the differ-

ent sub-systems. Especially the possibilities of re-

placing two-way relationships between sub-systems by 

one-way relations are of interest. 

5.2.1. Coupling between . atmosphere - crop 

system and unsaturated zone 

In fact not the atmospheric conditions at, say, 

2 m above the soil surface, but the microclimate in 

the direct vicinity of crop or soil surface causes 

changes in transpiration. There are several micro-

climatic models which take into account this form of 

feedback. All have the drawback that they need very 

detailed input data and very small time steps. There-

fore they are less suitable for simulation of region-

al hydrological systems. On the other hand, they can 

be useful to eliminate systematic errors in less-

detailed models. 

The method given in Section 4.2 is selected for 

describing the relationship between the atmosphere -

crop system and the land surface. This method does 

not imply that the potential rate of evapotranspira-

tion, Ep , will always be reached. The actual rate of 

evapotranspiration may be much lower, but this does 

not influence the state variables of the atmospheric 

system. Working in this way the atmosphere acts as 

an external boundary condition for the unsaturated 

zone. This means that the two-way relationship be-

tween atmosphere - crop system and unsaturated zone 

can be replaced by a one-way relationship. 
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5.2.2. Coupling between unsaturated zone and 

saturated groundwater system 
Unsaturated 

Nodal points 

Due to the existence of a zone of complete sat-

uration above the free water surface (capillary 

fringe), the phreatic level is not the real boundary 

between saturated and unsaturated soil, but soil wa-

ter pressure above the phreatic surface is negative 

and therefore we will take this surface as the bound-

ary between the two systems. 

There is no fundamental difference between the 

two systems as far as it concerns flow of water. 

Therefore, a number of scientists (e.g. FREEZE, 1971; 

NEUMAN et al., 1975) consider for modeling the unsat-

urated and saturated system as one uniform system. De 

LAAT (1980) presented a review of the consequences of 

this unified approach that describes flow in terms of 

pressure head. The problem is that in the unsaturated 

zone the governing differential equation is non-lin-

ear, in the saturated zone linear, while 	# 0 in the 

fonner and zero in the latter. FREEZE (1971) and ABBOT 

et al. (1979) solved this problem by taking 3- > 0 in 

the saturated zone, but there remains the fact that 

the time constant of the two systems are an order 

of magnitude different, causing inefficient numerical 

solutions. Efforts are made to solve this computation-

al difficulty. NARASIMHAN et al. (1977) developed a 

mixed implicit - explicit procedure for marching in 

the time domain. HORNUNG and MESSING (1980) introduced 

a non-iterative scheme, which combines a predictor -

corrector strategy, the Crank - Nicholson's scheme and 

Alternating Direction Implicit techniques for one-

dimensional flow. This scheme, however, is too time-

consuming to solve field-size three-dimensional flow 

problems where the interaction between saturated and 

unsaturated system is of importante. Therefore the de-

composition in two separate systems - the 'tradition-

al approach' - is more attractive. The main reason 

for this is that the flow to be considered in the un-

saturated zone is only vertical. 

The separate systems approach leads to a model 

structure as depicted in Fig. 5.2. The saturated zone 

is divided into a number of elements by imposing a 

grid on the region of interest. Bach nodal point re-

presents an element formed by the grid. The height of 

the phreatic surface in a particular point is con-

sidered representative for the corresponding element. 

The exchange of water between the saturated and un-

saturated zone in each point is incorporated by 

means of an upper boundary condition following from a 

separate one-dimensional flow model for the unsatu-

rated zone. 

Saturated 
flow model 

Fig. 5.2. Composition of saturated and non-saturated 
flow systems 

Taking the phreatic surface as an internal bound-

ary, different ways of coupling are possible (see al-

so Table 5.1). 

a) The phreatic surface is considered as a moving 

boundary. At time t the height of the phreatic 

surface, hf (t), is known, either as initial con-

dition or as a result of calculations for a previ-

ous period t-At, t. The unsaturated flow model 

gives a flux, vf , and a value for the storage co-

efficient, p. With these two values a new height 

of the phreatic surface is calculated for each 

nodal point of the saturated flow model. The solu-

tion in the time domain is achieved by either an 

implicit or an explicit procedure. 

In a fully forward or explicit scheme the value of 

hf (t) is the lower boundary condition for the un-

saturated flow model. This produces a flux through 

the phreatic surface vf (t) between t and t+At. 

vf (t) is used as input for the saturated flow mod-

el, yielding hf (t+At). This value in turn forms the 

lower boundary condition for the unsaturated flow 

model during t + 2At, etc. 

In a fully backward implicit scheme hf (t+At) is 

used as a lower boundary condition for the unsat-

urated flow model between t and t+At. Because this 

value is not a priori known, but dependS on the 

results of the unsaturated flow model itself an 

iterative procedure is necessary. In the first 

iteration round hf (t+At) is assumed, e.g. equal to 

hf (t). The unsaturated flow model yields v f (t). In-

troducing it into the saturated flow model yields 

a new value hf (t+At). The storage coefficient 

is derived from p = f(h f (t)), p = f(hf (t+At)) or 

p = f(hf (t), hf (t+At)). In the next iteration round 

flow model 
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References Auxiliary 
equation(s) 

Change in boundary 
conditions due to changes 

in system itself 

Method 	Type of coupling 

t 	— -->t + nAt 

unsaturated 
system 

saturated 
system 

Avf  Ahf = 0 

Avb Ahf u = f(vb ) De Laat (1980) 

a 

b 

c 

d 

e --> 	 unsat 

Lsat --- sat 
f 	-1 unsat 

ibid a 

g 

unsat 

sat 

Ahf # 0 	Avf 0 

Ahf 0 	Avf = 0 

Ahf 
(i) = 0 	Avf

(i) = 0 

Ahf 
(i-1)#  0 Avf (i-1)  

# 0 

Avb = f(Ahf ) 

Gilding and Wesseling 
(1983) 

Querner and Van Bakel 
(1985) 
Pikul et al. (1974) 

Refsgaard and Hansen 
(1982) 

Werkgroep Geohydrologi-
sche Aspecten van Grond-
waterwinning (1983) 

u = f(hf) or 

• = f(hf ,vf) 

P = constant 

• = constant 

• = constant 	Van Lanen (1983) 

vb  = f(hf) from[sat( this study 

Table 5.1. Different ways of coupling between unsaturated and saturated groundwater system 

unsat = unsaturated flow model, 3 = saturated flow model, hf = height of.phreatic surface, vf = flux through 
p reatic surf ace, vb  = flux throu plane below the lowest possible hf, Ahf( 1 ) = change in hf  during i-th 
iteration cycle 

a new hf (t+At) is introduced in the unsaturated 

model, etc. The iteration is stopped when differ-

ences between two successive iterations are small-

er than a certain preset value. 

In a time-centered scheme a weighted average val-

ue of hf (t) is used as a lover boundary condition 

for the unsaturated flow model between t and t+At. 

To find hf (t+At) by iteration, the procedure de-

scribed above is used. 

A disadvantage of an explicit procedure is the risk 

of instability when using too big time steps; an 

advantage is its simplicity. PIKUL et al. (1974) 

proved that it is more economical to use an explic-

it procedure with smaller time steps than an im-

plicit iterative procedure. QUERNER and van BAKEL 

(1985) found for a regional model for saturated 

and unsaturated flow that the explicit procedure 

remained stable, even when a time step of 7 days 

was applied. 

b) A variant of the method described under a) for an 

integrated surface/subsurface catchment model has 

been given by REFSGAARD and RANSEN (1982). They use 

a time-independent value for u. 

c) A simplification of method a) can be achieved by 

taking a one-way relationship between the unsatu-

rated and the saturated system i.e. the unsaturat-

ed zone is assumed to influence the saturated zone 

by a flux through the phreatic surface, but changes 

of the phreatic level induced by this flux are 

assumed not to influence the flux towards the,un-

saturated zone. This simplification offers great 

computational advantages because no iteration is 

necessary and therefore it is often applied in 

regional models and situations with rather deep 

phreatic levels. Although the phreatic surface re-

mains an internal boundary, in fact method c) con-

stitutes a fully decoupled approach. Examples of 

this approach are groundwater flow models that use 

net recharge as a function of time as upper bound-

ary condition. 

d) A one-way relationship between saturated and unsat-

urated system is also possible. Changes in the 

phreatic surface do influence the unsaturated sys-

tem, but do not affect the feedback mechanism of 
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the unsaturated zone i.e. v f  or the changes in vf 

 are ignored. This is true when e.g. the change is 

fully canpensated by a change in evapotranspira-

tion or when the change in v f  is an order of mag-

nitude smaller than the change in flux to the sur-

face water system. 

The method is very attractive in analyses of ef-

fects of water withdrawal from aquifers. When the 

fluxes through the phreatic level in the zero sit-

uation are known, the drawdown can be calculated 

by a saturated groundwater flow model only. The 

calculated phreatic levels then act as lower 

boundary for the unsaturated zone. This is only 

pennitted if induced changes in the unsaturated 

zone are small as cmnpared to changes in the sat-

urated groundwater system. The validity of this 

type of de-coupling has been investigated by the 

WERKGROEP GEOHYDROLOGISCHE ASPECTEN VAN GRONDWATER-

WINNING (1983). It concluded that the method is 

suitable for reproducing the drawdown, but about 

the possible reduction in evapotranspiration caused 

by the drawdown nothing is said. 

A great disadvantage is the Jack of counteracting 

the wrong assumption of the one-way relationship: 

vf  = f(hf). This relationship depends very much on 

soil physical characteristics of the unsaturated 

zone, especially on the hydraulic conductivity. 

This oroperty is difficult to derive from field 

measurements. 

e) A method which takes into account the interaction 

between the saturated and unsaturated system, but 

offers the opportunity of simulating both systems 

separately goes as follows: 

- simulate the saturated groundwater system with 
( 

an initial guess of vf
)  and known values 

for the entire simulation period. So 

T 

t=1 f 	' 	g't1 vf 	' 

	

= h (1) (t) 	E 	tij r, -, ) 	 (5.1a) 

where T is number of simulation steps; 

- with the phreatic levels, hY ) , as lower boundary 

condition the unsaturated flow is simulated yield-

ing new values for v (1)  namely v
(2)- 

 f 	, 	,  

tEl 	
„, T 	 N 

E
1  ■

7
f

2)  (t) = g( t  E1 f  h" )  (t)) 
	

(5.1b) 

( 

If v
2) 

f 
differs too much from v (1) ' the first and 

 
second step are repeated. The procedure can also 

be started with the second step. In that case an 

initial guess of hf (t) is needed. 

A disadvantage of the method is that there is no 

guarantee for convergency, although for practical 

applications this seems to be no problem (Van LANEN, 

1983). 

f) The GELGAM model (GELderland Groundwater Analysis 

Model) is a combination of a quasi-stationary 

model for the unsaturated (vertical) flow and a 

quasi three-dimensional model for saturated ground-

water flow. Each node of the discretized saturated 

system is connected with an unsaturated flow mod-

el. The method of coupling has been described in 

detail by De LAAT (1980). The fundamental differ-

ence with the method described under a) is that 

the boundary between the unsaturated and saturated 

zone is situated below the lowest phreatic level 

occurring during the simulation period. This elim-

inates the problem of a moving boundary. The prob-

lem of determining the right value for p is trans-

ferred to the unsaturated flow domain. 

During each time step and for each nodal point the 

unsaturated flow model yields a stepwise linear 

relation between the change in the phreatic level 

and the flux, vb , over the lower boundary of the 

unsaturated flow region, written as: 

vb (i) = a 1 (i) Ahf (i) + b
1 (i) 
	

(5.2) 

where a
1 

and b1  are regression coefficients and i 

is number of nodal point. With these relations the 

saturated flow model yields the change in phreatic 

level for the same time step. Now the correspond-

ing value of vb  can be calculated from eq. (5.2) 

and this lower boundary flux is used in the unsat-

urated flow model on each node. In the next time 

step new values for a l  and bi are calculated, with 

which the new position of the phreatic level is 

calculated, etc. 

In this study a somewhat different coupling has 

been applied to overcome some of the disadvantages 

mentioned above. 

With the saturated flow model a relationship is 

established between height of phreatic surface and the 

flux through this surface for each nodal point or 

group of points: 

N 	 N 

vf (i)  = 	hf (i)1 
	

(5.3) 

where N is total number of nodal points. This relation-

ship is used as the Cauchy type of lower boundary con-

dition in the unsaturated flow model. For computation-

al reasons the lower boundary of the unsaturated sys-

tem is set below the lowest height of the phreatic 

surface occurring during the simulation period. The 

hydraulic head at this boundary is taken equal to the 

phreatic level. Neglecting the hydraulic gradient in 

the saturated zone between the phreatic level, h f , 

and the lower boundary of the unsaturated system, z = 
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Fig. 5.3. Schematic representation of fluxes involved 
in the groundwater flow system 

zb , the drainage resistances discussed in Chapter 4 

can be used to find the groundwater flux to the 

open water system. Also a flow towards or from deep-

er aquifers can be introduced by incorporating it in 

the boundary flux. Denoting this flux as vb (hf), one 

has (Fig. 5.3): 

vb (hf) = vd (hf) + va  (h f) 
	

(5.4) 

where vd  is flux to the ditches and va  is flow to 

the deep aquifer. For vd  one can use: 

hf  - ho  

vd = 
nf 
	T 

and for va : 

hf -hm   va - 	 
c1  

where hm is hydraulic head in the middle aquifer and 

c1  the vertical resistance of the semi-confining 

layer in between. It must be remarked that in prin-

ciple both vd  and va  vary with the distance to the 

ditch. To get a representative situation the unsatu-

rated model is thought to pertain to the place where 

hf 	1-1 (Fig. 5.3). 

In this way the unsaturated system is related 

to the surface water system (h o) and the aquifer 

(hm). That gives impulses on it. All storage changes 

in the soil are now restricted to the unsaturated 

system. A number of scientists working on modeling 

of the unsaturated zone apply a similar procedure, 

for example De LAAT (1979) and BELMANS et al. (1983). 

In the chosen approach there is no relation be-

tween height of the phreatic surface and hydraulic 

head of the deep aquifer, so in fact the coupling be-

tween unsaturated and saturated zone is reduced to 

a one-way relationship. Especially in situations 

where changes in height of the phreatic surface in-

duced by e.g. surface water management change the 

regional pattern of groundwater flow this simplifica-

tion is not allowed. Because in the area under con-

sideration regional effects may occur, it will be de-

scribed later how to account for these effects with-

out complicating the modeling (Section 5.5). 

5.2.3. Coupling between saturated groundwater 

and surface water system 

Usually the relation between the surface water 

system and the saturated groundwater system is con-

ceptually modeled as a one-way relationship between 

surface water and groundwater, i.e. the surface water 

system is a boundary with prescribed head in the sat-

urated groundwater model. A one-way coupling between 

saturated groundwater system and surface water system 

is applied in numerous Hydrograph Synthesis models. 

The Stanford watershed model e.g. has a module for 

routing the water coming from the 'soil' module in 

the surface water system. For a detailed review, the 

reader is referred to KRAYENHOFF VAN DE LEUR 

et al. (1966). In a two-way relationship the sur-

face water level, ho , depends on the magnitude of the 

drainage flux, vd , which in turn depends on h o . 

The consequences of the use of one- and two-way 

coupling are given by ERNST (1978). He solved the 

drainage problem of undulating sandy soils analytical-

ly with and without an interaction between groundwa-

ter and surface water. The two relationships between 

vd  and hf  deduced for these cases did not show much 

difference. On the other hand Van LANEN and HEY (1978) 

concluded from results of the GELGAM-model in a region 

influenced by groundwater extraction, that the as-

sumption of no interaction sametimes may lead to un-

derestimating of the drawdown of the groundwater table. 

Having separate mathematical models for the sat-

urated groundwater and the surface water system and 

having the boundary between them fixed (the bottan of 

the surface water system) the coupling between the 

two systems can be done by means of an iterative pro-

cedure as described in Section 5.3 under method a). 

Starting with the surface water level as a boundary 

for the model of the saturated groundwater system, 

(5.5) 

(5.k) 
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the latter yields a flow to the surface water system. 

Next the computed flow is used as a boundary condition 

in the surface water model, yielding a new surface 

water level. This procedure is repeated until agree-

ment has been reached. 

The main drawback of this procedure is computa-

tional inefficiency caused by the fact that the time 

constants involved differs by several orders of mag-

nitude. As will be shown later this problem can be 

overcare by adjusting the time step in the separate 

systems to their corresponding characteristic times 

(see also GILDING and WESSELING, 1983). 

5.3. DIE ACTUAL NGDELING 

5.3.1. Problem description 

After having discussed principles and methods of 

modeling and procedures to describe the coupling be-

tween various sub-systems, the actual modeling will 

be dealt with. 

The problem under discussion is schematically 

given in Fig. 5.4. The water management of the water-

board comes in fact to the regulation of the open 

water level in the main canals by means of manipulat-

ing the discharge outlet and, if supply water is 

available, the inlet structure. In this way the open 

water level in the tertiary ('wijken') system in 

fact is manipulated too. In dry periods this system 

looses water towards the groundwater (flux v d) which 

creates in turn better soil water conditions for erop 

growth in the foren of increasing transpiration. 

Due to changes in the open water level the re-

gional groundwater flow may be influenced, causing 

Changes in the flux va . 

The problem to be solved now is to link the sur-

face water system to the groundwater system and re-

late them with the processes in the unsaturated zone, 

so that the effects of the water management measures 

become clear. Numerical models that can be used to 

simulate the effects of surface water manipulation as 

well as by waterboards for their management have to 

obey the following conditions: 

Fig. 5.4. Structure of the problem to be solved 
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a) the system must be capable to simulate the day-to - 

day water management; 

b) the smallest unit to be considered is a section, 

i.e. an area served by one open water level; 

c) the information available to the waterboard is 

limited to discharge, open water level and some-

times one or a few groundwater table depths for 

each section. 

The GELGAM-model (De LAAT and AWATER, 1978) that 

links groundwater flow and unsaturated flow uses 

Dirichlet-type boundary conditions. In addition it has 

no possibility for taking into account waterlogging 

problems. Moreover the model uses time periods of 10 

days, which are too long for the problem under discus-

sion here. Therefore a new one-dimensional model has 

been developed that uses Cauchy-type boundary condi-

tions to link saturated and unsaturated flow and gives 

a possibility of handling day-to-day changes in open 

water levels. This model called SWAMI? (Surface WAter 

Management Program) will be discussed hereafter. Be-

fore doing so same basic conventions that have been 

used throughout the text are given. 

Because the model is basically one-dimensional, 

fluxes and amounts of water are expressed per unit 

surface area. 

The elevations of phreatic surface and open wa-

ter level are expressed in cm below soil surface i.e. 

depth. To distinguish them from heights they are 

marked with an asterix. 

For simulation of transient water flow in prin-

ciple a time step, At, of one day is used. If neces-

sary this time step is reduced, especially in the 

case of open water. State variables with argument t 

represent the variable at time t, fluxes with argument 

t represent the flux between t and t+At. 

Volumes of water (e.g. water content of the root 

zone) are expressed in mm, fluxes are given in mm-d -1 . 

5.3.2. The open water system 

The open water of interest for the modeling can 

be divided into three parts. The first one (the primary 

system) delivers water to the area under consideration. 

The second part (secondary system) is the system of 

watercourses taken care of by the waterboard. In the 

present study this is the main canal system. The last 

part (the tertiary system) distributes the water over 

the area. In our case this part is formed by the 

small canals ('wijken'). 

The only figure about the primary surface water 

system of interest for modeling the water management 

is its supply capacity per unit area, s p . However, sp  

never can exceed the capacity of the inlet structure 

of the area, s i . So the supply capacity used in the 

model,sm'  iseitherboundbysP 
 or by si . Theactual 

supply rate, vo,p' from the primary to the secondary 

system is determined during the simulation, but can 

never exceed sm , so: 

v(t) = v o,p  o,p if 
v0,1) 	

s
m 	

(5.7) 

if v 	> s 
0 ,P 	 o, p 	m 

The secondary system maintained by the waterboard 

is modeled as a reservoir. The state of the reservoir 

is expressed as the level of the surface water, h 

that can be calculated from: 

W:3 s (t+At) = h
o 

s (t) + 0.1At(vos (t) + vow(t) 

- vo,p ( t)}/as  (5.9) 

where vo s is the flow rate from the secondary to the 

tertiary system, Vow  is the flow rate over downstream ,  

weir and a s is the fraction of the area covered by the 

secondary system. This area is, in general, so small 

that evaporation from it and precipitation on it can 

be neglected. 

In model terms the adjustable weirs are imaged 

as a level (depth of weir crest, 11 1:) that can be 

moved up or down with a given speed. The required 

change in weir crest depth is found by comparing the 

differences between the actual surface water level 

upstreams from the weir and a certain target level. 

For practical reasons a certain preset differente is 

allowed before the weir is adjusted. The establishing 

of the target level is governed by a number of opera-

tien rules that will be treated in Chapter 7. 

The discharge rate, vo w , is calculated with eq. 

(4.33). To convert 	 s h*o  (surface water level represen- 

tative for the entire secondary system) to the up-

stream water level, o  h*  w'  required to compute the dis- , 
charge over the weir, the backwater effect is taken 

into account using Manning's formula (eq. 4.30) in the 

form: 

11 ,w (t) = 	+ Cm{vo,w(t)} 2  if vo ,w  > 0 	(5.10) 

how  (t) = ho  s  (t) 
	

if vo w = 0 	(5.11) 

where the input variable CM  is a constant represent-

ing the average hydraulic properties of the second-

ary system. It may depend on h(*),s  and growing stage 

of water weeds. 

Now the flow over the weir v 	can be calculated o ,w 
from: 

v 	(t) = s (5.8) 
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v 	= 0 ow if h *  < h*  w ow (5.13) 

where cd is model discharge coefficient to be cal-

culated from: 

vo w  = cd (hZ - 11(*),w) n  if 111*,1  > h*o,w 	(5.12) 

cd  = C' x aw  x 8640 
	

(5.14) 

and aw  is specific width of weir. 

'The tertiary system of the small canals ('wij-

ken') is also modeled as a reservoir. The state of 

this reservoir is the surface water level, t' h* 	The 

water balance of this reservoir reads: 

h'j,(t+At) = h *o (t) + 0.1At{(vd (t) - fr (t))ag  - vo,$)/at  

+ E0 (t) - P(t)} 	 (5.15) 

where vd  is flux to ditches, fr  surface runoff, E o 

 evaporation from open water, P precipitation and at  

and a
g 
 fractional areas covered by the tertiary 

system and the ground surface, respectively. The 

value of vo s  can be derived from (see eq. 4.34): 

vos (t) = Ct {h,„ s (t) - 11::; t (t)} 2  if 	> 11 ,ts  

(5.16) 

v 	(t) = -Ct 	 t {11 *  (t) - 	,t (t)) 2  if h* 	h*  
o,s 	o,s 	 o, 	o,s 

(5.17) 

Thefáctor Ct takes into account the hydraulic proper-

ties of the system and is an input variable. Eqs. 

(5.16) and (5.17) are only applicable if the surface 

water levels are above the bottom depth of the system, 

h* c.  Therefore eqs. (5.16) and (5.17) have been ex- 

tended with: 

vo s  (t) = Cto  01* t 	c - h*  ) 2  if ,   

hopt  h*  and h*  > h*  o,t 	o,c 	o,s 	o,c 

vo s  (t) = -Ct  (h* ,s  - h*o c)2  if , 

h*  > h*  and h*  < ho  o,t ' o,c 	o,s 	c 

Data on the geometry like mutual distance, bot-

tom width, bottom depth and side slopes of the ter-

tiary watercourses are input variables, because they 

determine the value of the fractional area a t. 

To maintain numerical stability in case the 

surface water level comes below the bottom depth, the 

water surface is reduced to half the bottom width. 

5.3.3. The unsaturated system 

In the unsaturated system the processes between 

soil surface and the lowest possible height of the 

phreatic surface are described. This system is divided 

into the root zone and the transition zone (Fig. 5.4). 

The root zone is modeled as a reservoir with storage 

Wr . The water balance of this reservoir reads: 

Wr (t+At) = Wr (t) + At{(-Es (t) - Et (t) 	Pn(t) - fi(t) + 

+ v
r (t)}a g 
	 (5.21) 

where vr is flux through the lower boundary of the 

root zone. Soil evaporation, Es , and net precipita-

tion, Po, are input variables. They are calculated 

with the unsaturated flow model SWATRE (for a descrip-

tion of the model see BELMANS et al., 1983). The net 

precipitation in this model is calculated as: 

Pn (t) = P(t) - Ei (t) 	 (5.22) 

where Ei  is evaporation rate of intercepted precipita-

tion, to be estimated with: 

Ei(t) = uP(t) (v-wP(t)) s c 	 (5.23) 

where u, v and w are regression coefficients and S c  is 

soil cover fraction. The soil evaporation rate, Es , in 

SWATRE is calculated as the minimum of the Darcian 

flux from the top nodal point of the model to the soil 

surface and a flux derived from an empirical relation-

ship, according to BLACK et al. (1969): 

Es (t) = X 	- Xs
Vt-T 
	

(5.24) 

where as is soil-dependent parameter and t' is time 

after the dry period started, d. The transpiration 

rate, Et , is calculated as: 

(5.18) 

(5.19) 

v 	(t) = 0 o,s if h*  > h*  ho
* 
 o,c Et (t) = aT  Et 	 (5.25) (5.20)  

where Et,p  is potential transpiration. 
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Fig. 5.5. Functions relating relative transpiration, 
Et /Et n , and relative water storage in the root zone, 
Wr/Wr ', used for the computation of reduction in 
transpiration caused by soil water conditions 
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Contrary to the approach used in SWATRE where 

the reduction of the potential transpiration depends 

on the pressure head in the root zone, here a T.is 

taken to be dependent on the relative water storage 

of the root zone, Wr/Wr 5  (Fig. 5.5) where Wr 5  is 

the water storage of the root zone at complete satu-

ration. In the figure a l  represents the anaerobiosis 

point and a5  the wilting point. Between these two 

vr (t) = f{h;(t), h;(t+At), Wr (t), Wr (t+At)} 

vr (t) = f(Wr (t ), Wr (t+At)} 

values the reduction depends on W r/Wr 5  and the 

oration demand of the atmosphere. The 'values a l 

 through a5  are input variables. 

The flux through the lower boundary of the 

zone, vr , is calculated as: 

if W 	Wr,e 

evap-

root 

(5.26) 

(5.27) 

if Wr < Wre 

where Wr e is soil water storage of the root zone 

when vr  = 0 (equilibrium situation), so: 

Wre = f(h* ) 
	

(5.28) 

Eq. (5.26) expresses that vr (t) depends on the 

water storage of the root zone while eq. (5.27) gives 

the capillary rise. Relevant data are obtained from a 

finite difference model for steady-state unsaturated 

flow. This model yields pressure head profiles for 

different values for h *  and vr . With the help of the 

soil water retention curve the pressure head is con-

verted into water content. 

The transition zone (Fig. 5.4) is also modeled 

as one single reservoir with a water storage Ws . The 

water balance of this reservoir reads: 

1415 (t+At) = W5 (t) - At(vr (t) + vb (t)lag 	(5.29) 

where vb  is the flow rate at the bottom of the reser-

voir (below lowest possible h;) written as: 

vb (t) = va(t) + vd (t) 	 (5.30) 

in which va is the regional groundwater flow component 

and vd  is the exchange with the surface water system 

(see Fig. 5.4). The value of vd  is derived from (see 

eq. 4.48): 

vd (t) = f{h *f (t) '  hf  (t+At), hot (t), ho,t (t+At)} (5.31) 

and va  is derived from: 

va (t) = f(h;(t), h;(t+At),h t (t), hj)t (t+At)} (5.32) 

The latter relation is input for the SWAMP model and 

is derived from the FEMSATS model (Paragraph 5.5.4). 

The depth of the phreatic surface is calculated 

as: 

h * (t+At) = h * (t) 
u(t) s  

where u s  is storage coefficient of the transition zone 

depending on h; and v r  according to: 

us  (t) =(t) 	if hf   < h*  

	

se 	 fb 

Ps (t)  = lise (t) 
	

if vr 	0 

Us (t) = f(h*f (t) '  vr  (t)} if vr > 0 and h*  > 

where h; b  is a groundwater depth at which the profile 

is so wet that the gradient in hydraulic head can al-

ways be neglected and u s e  is storage coefficient of 

the transition zone when 'vr  = 0 (equilibrium situa-

tion), so: 

1.1 	f (h * ) s,e 	f 
	 (5.37) 

Eq. (5.36) is derived from the pressure head curves ob-

tained with the above described steady-state model for 

unsaturated flow by converting them into saturation 

deficit curves for the transition zone with the help of 

the soil water retention curves. This relationship depends 

W5 (t+At) - W5 (t) 
(5.33) 

(5.34) 

(5.35) 

(5.36) 
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on the soil physical unit considered and is input for 

the model just as eq. (5.37). 

5.3.4. The saturated groundwater system 

The saturated groundwater system of the entire 

area was modeled with the stationary version of the 

computer program FEMSAT (acronym for Finite Element 

Mbdel for SATurated groundwater flow) for quasi-three-

dimensional flow (van BAKEL, 1978; QUERNER, 1984) 

making use of the geohydrological information given 

in Chapter 4. The surface water system was built in 

as constant head boundary and coupling with the sat-

urated system was done through a drainage resistance 

specified for each node. 

Taldng the upper boundary of the saturated sys-

tem at the lowest possible phreatic level means that 

storage in the saturated system is eliminated so that 

the state variables of the saturated groundwater sys-

tem for various boundary conditions can be calculat-

ed with FEMSATS. 

FEMSATS was run for a series of fluxes, vf , 

through the upper boundary. In this way for each node 

relationships veere established between v f  and the 

height of the phreatic surface, h f . 

In principle this relationship depends upon both 

vf and the surface water level in the node considered 

and in all other nodes. The phreatic level in any 

atbitrary nodal point i can be written as: 

hf (i) = 	(al , ..., 	aN) 

vf,i  : 
vf.  N 

t,  + 	(b 1 , ..., bN) 
ho,11 . 
ho' , N 

(5.38) 

where a l , 	aN  and b l , 	bN  foren the i-th row 

of the influence matrices A and B, respectively, and 

N is total number of nodal points. The coefficients 

of A and B can vary with vf  and ho , except in the 

case of a fully linear model where they are constant. 

A considerable reduction in computational time 

can be achieved by assuming that v f  and ho  in all 

nodes are uniquely correlated with each other. This 

reduces the two influence vectors for upper boundary 

fluxes and open water levels to a single equation of 

the foren: 

hf (i) = f{vf (i), ho (i)} 	 (5.39) 

The regional pattern of the flux v f  must be strong-

ly correlated because piezometers show a narrow cor-

relation (Table 5.2). Differences in v f (t) from node 

to node originate from differences in actual evapo-

transpiration minus net precipitation. Systematic 

differences in net precipitation can be ignored. Dif-

ferences in actual evapotranspiration between the 

nodes are caused by differences in groundwater table 

and physical properties of the unsaturated zone. By 

taking per nodal point a unique relation between 

capillary rise and groundwater depth and taking as 

upper boundary conditions not a flux boundary but a 

boundary where vf  = f(111.) (Cauchy condition), the 

regional correlation which is in reality present, is 

taken into account. The assumption is, however, not 

always correct. For instance the maximum difference 

in soil water retention capacity of the root zone be-

tween an improved peaty soil (rooting depth 40 cm) 

and a podzolic soil (rooting depth 20 cm) is about 

50 min. This difference causes a difference in total 

evapotranspiration during an average and a dry year 

of 30 mm and 60 mm respectively (van WALSUM and van 

BAKEL, 1983). As a result, the rise of the phreatic 

surface in autumn in the first soil will start later 

than in the Jatter. During the time that this occurs, 

Table 5.2. Matrix of correlation coefficients of a number of piezometers in 'De Monden' 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1.00 
0.96 
0.91 
0.89 
0.93 
0.81 
0.85 
0.87 
0.92 
0.84 
0.87 
0.88 
0.87 
0.84 
0.85 
0.83 
0.66 

1.00 
0.96 
0.96 
0.95 
0.89 
0.91 
0.91 
0.91 
0.91 
0.92 
0.93 
0.92 
0.90 
0.88 
0.86 
0.75 

1.00 
0.98 
0.94 
0.93 
0.92 
0.91 
0.87 
0.94 
0.95 
0.94 
0.95 
0.94 
0.89 
0.87 
0.80 

1.00 
0.95 
0.94 
0.92 
0.89 
0.86 
0.95 
0.95 
0.94 
0.95 
0.94 
0.89 
0.89 
0.82 

1.00 
0.92 
0.88 
0.90 
0.90 
0.91 
0.92 
0.92 
0.94 
0.91 
0.91 
0.86 
0.76 

1.00 
0.88 
0.84 
0.82 
0.93 
0.92 
0.89 
0.92 
0.92 
0.88 
0.84 
0.84 

1.00 
0.92 
0.85 
0.91 
0.92 
0.94 
0.93 
0.91 
0.84 
0.85 
0.81 

1.00 
0.90 
0.90 
0.91 
0.93 
0.92 
0.89 
0.82 
0.81 
0.76 

1.00 
0.86 
0.86 
0.87 
0.85 
0.82 
0.83 
0.79 
0.66 

1.00 
0.99 
0.97 
0.97 
0.96 
0.91 
0.90 
0.86 

1.00 
0.99 
0.98 
0.96 
0.92 
0.90 
0.84 

1.00 
0.98 
0.96 
0.90 
0.90 
0.83 

1.00 
0.97 
0.91 
0.94 
0.87 

1.00 
0.90 
0.91 
0.85 

1.00 
0.85 
0.77 

1.00 
0.88 1.00 
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the assumption that v f  and ho  are uniquely correlated 

is violated. This discrepancy will happen at the be-

ginning of the wet season and will last on the average 

for about one month. In general, this time is not of 

interest for surface water manipulation, because at 

that time the surface water will be already at winter 

level. Of course, vf  may vary within a node due to 

differences in crop, differences in soil proporties, 

etc., but these differences will be leveled out by 

local saturated groundwater flow and will not affect 

the regional groundwater flow pattern. 

The assumption for a unique correlation of the 

open water levels in all nodal points is quite reason-

able. Raising and lowering of the surface water level 

is exclusively handled by the waterboard and, in gen-

eral, the time at which changes are performed is the 

same for all sections. Differences in changes, how-

ever, are possible and the consequences of that on the 

validity of eq. (5.39) have to be considered. 

A relation like eq. (5.39) for each nodal point 

was obtained by running FEMSATS with values for ho 

 differing per section and different vf-values. Because 

vf  is equal to vb  (eq. 5.30) and the magnitude of v d 

 is known from hf , ho  and T, va  is known too and a re-

lation between va and hf  can be derived. 

A section (which has one surface water level) cov-

ers a number of nodal points. From the values for h f 

 and va for all nodal points in a section average val-

ues hf  and va  for that section were camputed. Taking 

into account the average soil surface elevation of a 

section the relationship between v a , Pf and 11 *0  was 

established being: 

va (j) = f(14. (j), h(*3 (j)} 	 (5.40) 

where j is section number. Eq. (5.40) is used to take 

into account the effects of water management in the 

area on the regional groundwater flow and vice versa. 

5.3.5. Computational procedure in SWAMP 

A number of relationships in the previous sections 

are interactive in the sense that rates depend on state 

variables and state variables are influenced by rates. 

To solve this problem an interactive numerical proce-

dure is required. With the same procedure, non-linear 

relationships can be handled. 

The numerical procedure for solving the system of 

equations incorporated in SWAMP comprises the follow-

ing steps: 

1) the state variables at time t are known, either as 

initial conditions or as a result of computations 

for a previous time step; 

2) a number of fluxes and parameters for the period 

t, t+At, some state variables and fluxes at t+At 

are copied from the previous time step to be used 

in the first iteration round of the next time 

step; 

3) fluxes between t and t+At and state variables at 

t+At are calculated using the equations given in 

the previous sections; 

4) the variables calculated in step 3 are compared 

with the first estimates; 

5) depending on the result of the comparison in step 

4), parameters are adjusted and steps 3) and 4) 

are repeated until the difference in h f  from two 

consecutive iterations is smaller than a preset 

value. 

The procedure given is in fact a relaxation 

method. Because some functional relationships used 

in the model are non-linear, this procedure is only 

stable when At is smaller than a certain critical 

value, At c . Each sub-system has its own value At c,i , 

the magnitude of it being dependent on: 

- the degree of non-linearity in the functional re-

lationships involved; 

- the time constant, T, of the sub-system to be de-

fined as: 

T i 	Si Wi 	 (5.41) 

whereS.isstoragecoefficientandw.is  specific 

resistance. As an example suppose that the entire 

system could be restricted to the transition zone 

of the unsaturated system and the tertiary surface 

water system only. Furthermore let T, p , a and a t g 
be 200, 0.1, 0.98 and 0.02, respectively. Then the 

transition zone would have a r-value of 200 x 0.1 x 

0.98 = 19.6 days and the tertiary surface water 

system 200 x 1.0 x 0.02 = 4 days. This example 

shows that great differences in time constant be-

tween the different sub-systems occur. In fact the 

situation is even worse, because the flow resis-

tance over weirs is much lower than the resistances 

for groundwater flow. 

The large difference in T between the ground-

water system and the surface water system may result 

in an inefficient numerical procedure. Therefore in 

the iterative procedure an explicit calculation of 

the state variables and fluxes in the surface water 

system with a small time step, At', is nested by using 

the depth of the phreatic surface, calculated with 

the iterative procedure within one explicit cycle as 

a boundary condition. It turned out that for At and 
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At' 1 and 0.01 day, respectively, the model did not 

show any instability. 

For the change in target level of surface water 

depth hó ilf a special subroutine was developed, which 

will be dealt with in Chapter 7. 
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R - 1 -" (6.1) 

6.2. CALIBRATION OF FEMSATS 

6.2.1. Procedure 

E(F - F') 2  
- e E(F - 

6. MODEL CALIBRATION AND VERIFICATION 

6.1. INTROBUCTION 

According to BEVEN and O'CONNELL (1982) model 

calibration means the selective improvement of ini-

tial parameter estimates through comparison of ob-

served and simulated variables. Others (CONTACTGROEP 

GRONDWATERMODELLEN, CHO-TNO, 1982) define calibration 

as the establishment of values for the parameters. 

The first definition is more or less a 'trial 

and error' calibration. The values of parameters are 

changed in a heuristic way tilt the best possible 

agreement between the output of the model and ob-

served data is reached. A disadvantage is that there 

is no evidence that the final parameters introduced 

are the best ones. 

To overcome this disadvantage, a sensitivity 

analysis can be carried out, i.e. the systematic 

evaluation of changes in parameters or boundary con-

ditions. 

The second definition is broader and includes 

the inverse use of models. This means that instead 

of simulating hydrological variables from input pa-

rameter values, field data are used as input in the 

model to find values for the parameters. These field 

data have to be accurate, because otherwise the pa-

rameter values can become physically unrealistic. 

To overcome this difficulty preset conditions with 

respect to the ranges of the parameters can be in-

corporated in the model. 

Verification or validation of a model means 

testing whether or not it is acceptable. This has to 

be done by comparing observed and simulated vari 

ables. Of course, field data used for verification 

must be independent from those used for calibration. 

The question of acceptability of a model can be 

answered by using objective criteria. A criterium, 

widely used, is the efficiency factor, R e  (NABEI and 
SUTCLIFFE, 1970), defined as:  

where F is the measured variable, F' is the simulated 

one and F is the average of the measured variables. 

If observed and simulated data fully agree R e  = 1. 

In the hydrological model for the region 'De 

Monden', as discussed in Chapter 5, there is a large 

number of parameters so that calibration is compli-

cated. Therefore the models FEMSATS and SWAMP are 

calibrated separately. Calibration of FEMSATS will 

be treated in Section 6.2. A real calibration of 

SWAMP was not possible because during the period of 

observations (1978-1981) hardly any reduction in po-

tential transpiration occurred. Therefore it is im- 

possible to calibrate e.g. soil water characteristics 

or hydraulic conductivities. Almost any combination 

of parameters will yield the same result, namely poten-

tial transpiration. Besides, determination of the 

0(hp ) and K(hp)-relationships per soil physical unit, 

as discussed in Chapter 4, is already the prod- 

uct of a calibration process. Hence, calibration of 

these relationships with a flow model would mean a 

rejection of the validity of the methods of determi-

nation. Other parameters in SWAMP, like the thickness 

of the root zone and the geometrical and hydraulic 

properties of the surface water system were derived 

from the physical description of the region, given 

in Chapter 4. The values for the drainage resistance 

are calibrated with FEMSATS. 

Verification of FEMSATS will be discussed in 

Section 6.3 and of SWAMP in Section 6.4. Because ver-

ification of SWAMP was not quite satisfactory, a kind 

of pseudo-verification has been carried out by com-

paring the results of SWAMP with those of a modified 

version of SWATRE (Section 6.5). 

The method to use the results of FEMSATS as part 

of the lower boundary condition in SWAMP, discussed 

in Chapter 5, is verified in Section 6.6. 

In FEMSATS the initial values for the geo -hydro - 

logical parameters (i.e. K 1 D1 , c1 , K2D2 , c 2 , K3D3 , T) 

were those described in Chapter 4. In a number of 

cases these values were obtained from water balances 

e.g. T, c 1  and c2 . The initial values have been im- 

46 



proved by the 'trial and error' calibration method in 

FEMSATS. The objective functions were agreement be-

tween measured and simulated hydraulic heads in the 

different aquifers. The 'trial and error' calibration 

was chosen because 1) the accuracy of the field data 

was insufficient and 2) FEMSATS is only used to estab-

lish the functional relationship v a  = f(11;-,hp per 

section (eq. 5.40). 

A problem with calibration of parameter values 

in a steady-state flow model is that field data var- 

ies with time and depends on the history while a 

steady-state model has, by definition, no memory. 

Therefore calibration of parameters in a steady-state 

model is only possible for field data from periods 

with small changes in storage. The period 10 Oct. 

1980 - 27 Feb. 1981 was such a period. The change in 

storage in the phreatic aquifer, derived from changes 

in height of the phreatic surface during this period 

was 15 mm (van KEULEN, 1982). The change in storage 

in the deeper layers can be ignored, as was already 

--350-- Water balance 	—250--- Model 

Fig. 6.1. Comparison between c1-values calibrated with FEMSATS (full lines) and those derived from water balances 
(dotted lines) 
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proved in Chapter 4. 

As boundary conditions for FEMSATS during the 

period the following data were used: 

- the upper boundary flux, v f  = -1.96 mm.d-1  through-

out the area, viz. the average precipitation surplus 

during this period; 

- per section an average open water level, derived 

from field data; 

- per nodal point on the boundary of the region a hy- 

draulic head, also derived from field data. 

With these data FEMSATS was run, yielding values 

for the hydraulic heads in the different layers and 

the discharges per section. In order to restrict the 

almost infinite possibilities to adjust the geo-hy-

drological parameters per nodal point, only those 

parameters were calibrated 1) which could not accu-

rately be detennined from geo-hydrological data, 

2) which have a great influence on the model results 

--200-- Field data 	 —200— Model 

Fig. 6.2. Comparison between c 2-values calibrated with FEMSATS and those derived from water balances 
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and 3) for which field data were available for cali-

bration. These restrictions meant that only the pa-

rameters c1, c2 and T have been calibrated. 

6.2.2. Results of calibration 

In Fig. 6.1 the calibrated isoline pattern of the 

resistance between phreatic and middle aquifer (c 1 ) is 

compared with the initial pattern. Only in the north- 

western part of the region the c 1 -value had to be 

changed. This adjustment is in good agreement with 

the (scarce) data about the extension of Eemian de-

posits. 

A comparison between calibrated and initial 

isoline pattern of the vertical resistance, c 2 , of 

the layer between middle and lower aquifer is given 

in Fig. 6.2. The calibrated pattern is in better 

agreement with the extension of the Cromerian clay 

than the initial one. 

13501 Water balance 
	

350 Model 

Fig. 6.3. Comparison between the T-values per section calibrated with FFMSATS, and the T-values derived from field 
data 

49 



In principle, when calibrating, T -values should 

be changed per nodal point. There were, however, not 

enough field data to do so. Hence, changes were only 

tried per section. In the field a considerable varia-

tion in T-value may occur within a section. 

In Fig. 6.3 the calibrated and initial T-values 

per section are compared. The most important changes 

were:  

- in section W-16 T has been increased from 150 to 

195 days; 

- the T-value of section 0-44 has been increased from 

300 to 540 days. This higher value was due to bad-

ly maintained 'wijken'; 

- the T-value of section 0-38 has been increased from 

150 to 440 days. This value seems rather high be-

cause the drainage situation in this section is 

rather good; 

--- Field data 	—9.00— Model 

Fig. 6.4. Contour lines of phreatic groundwater levels simulated with calibrated parameters and the pattern 
derived from field observations 
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- the increase of the T-value of section 0-40 from 

150 to 270 days seems reasonable, because the den-

sity of ditches in this section is low. 

With the adjusted values of c l , c2  and T-values 

the piezometer observations and simulated values in 

the three aquifers is rather good, as can be seen in 

Figs. 6.4, 6.5 and 6.6. The simulated pattern of the 

phreatic surface is smoother than the one derived 

from field observations. This may be due to the fact  

that in the observed values local differences in 

height of the ground surface may have played a role. 

The number of piezometers in the middle and low-

er aquifer was too low to construct a pattern from 

field observations. The observed data fit very well, 

although one piezometer in the vicinity of the 10.00 

m-isoline shows only values for h 2  and h3 of 9.52 m 

and 9.53 m, respectively. 

•9.17 Field data 	—9.50 — Model 

Fig. 6.5. Contour lines of h 2-values simulated with calibrated parameters and field observations 
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Table 6.1. Results of a sensitivity analysis with respect to changes in average height of the phreatic surface 
per section (m) compared with the value in the reference run 

Section Kip t 
KD2 KD3 

T c 1 
	

c 2  

0.5 2.0 0.5 2.0 0.5 2.0 0.75 2.0 0.5 1.5 0.5 2.0 

W-14A 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.10 0.01 -0.01 0.00 0.00 
W-14B 0.00 0.00 -0.01 0.00 -0.04 0.03 -0.10 0.28 0.03 -0.02 0.00 -0.01 
W-16 0.00 0.01 0.01 0.01 -0.04 0.05 -0.19 0.29 0.05 -0.03 0.01 -0.01 
W-18 0.00 0.00 -0.01 0.01 -0.05 0.06 -0.10 0.28 0.00 -0.01 0.00 -0.01 
W-20 0.00 0.01 -0.01 0.01 0.00 0.00 -0.05 0.15 0.02 -0.01 0.01 -0.01 
W-22 0.00 -0.01 0.01 -0.02 0.00 -0.01 -0.04 0.13 -0.02 0.01 -0.01 0.00 
W-24 -0.01 -0.01 -0.01 0.00 -0.06 0.06 -0.15 0.48 -0.01 -0.01 0.00 -0.02 
W-26 0.00 0.00 0.00 0.01 -0.05 0.08 -0.14 0.50 -0.02 0.01 0.00 0.01 

M-22 0.00 0.01 0.00 0.01 0.00 0.00 -0.05 0.22 0.00 0.00 0.01 0.00 
M-24 0.00 0.00 0.01 0.00 0.00 0.01 -0.11 0.41 0.00 0.01 0.00 0.00 
M-26 0.00 0.00 0.00 0.00 -0.01 0.01 -0.05 0.16 0.00 0.00 0.00 0.00 
M-28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
M-34 0.00 0.00 0.00 0.01 0.00 0.00 -0.07 0.29 0.00 0.00 0.01 0.00 
M-36 0.00 0.00 0.00 -0.01 0.00 -0.01 -0.10 0.36 -0.01 0.00 0.00 0.00 

0-32 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.06 0.00 0.00 0.00 0.00 
0-34 0.00 0.00 -0.02 0.02 0.00 0.00 -0.05 0.19 0.00 0.00 0.00 0.00 
0-36 0.00 0.00 0.00 0.00 0.00 -0.01 -0.05 0.14 0.00 0.00 -0.01 0.00 
0-38 0.00 -0.01 0.03 -0.04 0.03 -0.04 -0.07 0.22 -0.02 0.01 -0.03 0.03 
0-40 0.00 0.00 0.00 0.00 0.01 -0.00 0.02 -0.08 0.01 0.01 0.00 0.01 
0-42 0.00 0.00 0.02 -0.01 0.01 0.00 -0.06 0.19 0.00 0.01 0.00 0.01 
0-44 0.01 -0.01 0.03 -0.04 0.01 -0.01 -0.14 0.43 -0.01 0.01 -0.03 0.02 
0-46 0.00 0.00 0.00 0.01 0.00 0.00 -0.03 0.10 0.00 0.00 0.00 0.00 

especially in the western part. Again, this effect 

can be explained by the type of boundary condition 

used for calibration, i.e. fixed hydraulic heads. Low-

ering of T in a period of precipitation surplus means 

a lower height of the phreatic surf ace. As a result, 

the boundary flux will increase. The high sensitivity 

of the model results for changes in T-values implies 

on one hand that this parameter can be calibrated 

quite well but on the other hand that it is necessary 

to determine this parameter with relatively high ac-

curacy. 

The influence of changes in c l  and c2-values is 

less than expected. This means that the situation 

used for calibration was not very suitable for a prop-

er calibration of these resistances. It is to be ex-

pected that in a situation of water withdrawal from 

the lower aquifer the c /  and c 2-values could be cali-

brated much better because of larger changes in head. 

The model FEMSATS, however, was only used to investi-

gate the effects of relatively small changes in the 

surface water level and hence small changes in heads 

in the aquifers on the regional groundwater flow pat-

tern. 

6.3. VERIFICATION OF FEMSATS 

Because for verification of FEMSATS no second pe-

riod with negligible changes in storage and sufficient 

field data was available, a less direct and less for-

mal way of verification was carried out by comparing 

long term differences on observed and simulated re- 

Table 6.2. Comparison between average regional fluxes 
(nm•d-1 ) per section, derived from water balances 

and obtained by simulation with >pmr, over the pe-
riod 6-2-1978 to 5-10-1981 

Section Observed Simulated Observed Efficiency 
minus 	factor R 

 simulated 

W-14 
W-16 
W-18 
W-22 
W-24 
W-26 

Western 
part 

M-22 
M-24 
M-26 
M-34 
M-36 

Middle 
part 

0-32 
0-34 
0-36 
0-38 
0-40 
0-42 
0-44 
0-46 

Eastern 
part 

Whole 
region 

Whole re-
gion, cal-
culated 
from bound-
ary flux 

- 

1.8 
0.1 

-0.9 
-0.4 
-0.7 

0.5 

- 

-0.3 
-0.3 
-0.5 
-0.7 

-0.4 

- 

- 

-0.7 
-1.1 
-1.0 
-0.6 
-0.7 
-0.6 

-0.6 

-0.2 

0.3 

0.6 
1.4 
0.3 

-0.7 
0.4 

-0.2 

0.5 

-0.2 
-0.3 
0.0 

-0.2 
-0.5 

-0.2 

0.8 
0.2 
0.2 

-0.6 
-0.4 
-0.2 
-0.5 
0.0 

-0.2 

0.1 

- 

0.4 
-0.2 
-0.2 
-0.8 
-0.5 

0.0 

- 

0.0 
-0.3 
-0.3 
-0.2 

-0.2 

- 

- 

-0.5 
-0.5 
-0.6 
-0.4 
-0.2 
-0.6 

-0.4 

-0.3 0.61 



gional flow per section. 

The calibrated saturated flow model FEMSATS was 

used to establish the functional relationship v a  = 

f(hf ,h0) per section required for the lower boundary 

condition of the unsaturated flow part of SWAMP. Next 

SWAMP was used to simulate per section the effects of 

different alternatives of surface water management. 

The results of these simulations are dealt with in 

Chapter 9. One of the outcames is a time series of 

the regional flux, va , per section. From this series 

the mean va during the period for which water balance 

measurements were available, have been selected. In 

Table 6.2 these values are compared with the corre-

sponding water balance data. For this purpose, the 

water balance equation is applied in the following 

way: 

Ev
a = EP - EE + Ev o,w 
	 (6.2) 

The cumulative precipitation, EP, has been taken from 

the neighbouring KNMI-station Nieuw-Buinen, the actual 

evapotranspiration, IE, was derived from the water 

balance of the whole area and Evow  is the measured 

total discharge per section. 

The agreement between observed and simulated data 

is rather poor, especially for the eastern part of the 

area. Possible reasons are the low accuracy of the 

measured discharges in periods of low discharge rates 

(weirs are not ideal for measurement) and a systematic 

underestimation of the measured discharges. The first 

reason is supported by the fact that the part with 

the lowest discharges, i.e. the eastern part, shows 

the highest discrepancy. The second reason is support-

ed by the net regional flux in Table 6.2, calculated 

from the boundary fluxes of the saturated g*roundwater 

system. This figure results from head gradients multi-

plied with the transmissivity and its accuracy is 

within 0.2 mm.d 1 . 

6.4. VERIFICATION OF THE UNSATURATED FLOW PART IN SWAMP 

6.4.1. Verification with lysimeter data 

With the model SWAMP the effects of surface water 

management on the actual transpiration of potatoes was 

simulated. Hence, a proper way of verification is to 

feed the model with measured meteorological data and 

observed surface water levels and to compare the sim-

ulated actual transpiration with the transpiration 

derived from field data. For this purpose, four non-

weighable lysimeters were installed in the experimen-

tal field (for the location, see Fig. 3.8). By means 

of an automatie device these lysimeters had the same 

Table 6.3. Water balance data from lysimeters (ob-
served) and simulated for the period 29-4-1980 to 
1-10-1980. All figures are in mm 

Observed 	 Simulated 

EPn 	 399 	399 (input) 

EEt 
	 240 (Et p  = 249) 

ZEs 
	 67 (input)(E

s,P 
 = 149) 

1(Et 4' Es) 
	

374 	307 

EW
r + AWs 
	-70 	- 35 

Evb 
	 -95 	-127 

groundwater level as their surroundings (FEDDES, 

1971). In order to measure the changes in soil water 

content, tensiometers were installed. Evapotranspi-

ration was obtained as a balance term. 

In Table 6.3 the measured water balance terms 

for the period 29-4-1980 to 1-10-1980 are compared 

with the corresponding simulated values. The 67 mm 

difference between observed and simulated E t  and Es 
is rather large. Possible reasons are: 

- the amount of net precipitation is derived from 

EPn  = EP - 1E1  - Ef i . Rainfall was obtained from 

a pluviometer, 1E i  computed from SWATRE and Ef i  was 

set equal to zero, because of the high infiltration 

capacity of the soil. Especially this latter as-

sumption is questionable because of the heavy 

showers occurring during this growing season; 

- the simulated Et  is bounded by the amount of E t, p . 

A difference of 9 mm has been simulated because of 

very wet conditions during part of the growing season; 

- the simulated Es  is input for the model and has been 

calculated with SWATRE. As was already described in 

Chapter 5, for the conversion from potential soil 

evaporation rate, Es p , to Es  empirical relationships 

are used in this model. 

The most important conclusion from the figures 

in Table 6.3 is that there has been hardly any reduc-

tion in transpiration. This outcome is supported by 

field observations. Hence, verification of SWAMP, 

using the lysimeter data of 1980, means a verification 

of the upper boundary conditions, i.e. the magnitudes 

of Et,p and Es and not a verification of simulated 

reduction of Et,p.  Therefore SWAMP could not be ver-

ified with lysimeter data. 

6.4.2. Verification with thermal infrared 

images 

The regular data collection period ended in Sep-

tember 1981 without the occurrence of any significant 
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reduction in transpiration. In 1982 such a period 

occurred and therefore on 4 August 1982 an Infra-Red 

Line Scanning (IRLS) flight was performed above the 

area. 

Remote sensing techniques can be very useful to 

characterize the regional pattern of reduction in 

evapotranspiration. The theoretical background to 

convert heat images into instantaneous evapotranspi-

ration values and the procedure to obtain 24-hr val-

ues of evapotranspiration are described by SOER 

(1980). A complete description of obtained pictures 

and the analysis of them are given in NIEUWENHUIS 

et al. (1985). 

The relationship between temperatures and 24-hr 

evapotranspiration of potatoes and sugar beets has 

been determined by means of the TERGRA-model (SOER, 

1977, 1980). The crop roughness z 0  is set equal to 

3.5 cm corresponding to a crop height of 60 cm 

(NIEUWENHUIS and PALLAND, 1982). The data offered the 

possibility to classify the reduction in evapotrans-

piration into four classes, viz. extremely high 

(>60%), considerable (25-60%), some (10-25%) and 

negligible (<10%) reduction, corresponding with I 

through TV, respectively in Fig. 6.7. 

Fig. 6.7. Regional pattern of reduction in evapotrans-
piration of part of the study area and its surround-
ing, derived from heat images 

Patterns shown in Fig. 6.7 have been determined 

only from the temperatures of the potato and sugar 

beet plots. It should be remarked that, by classifying, 

a lot of detailed information was lost. 

In the Hondsrug region with groundwater depths 

of more than 5 m below soil surface large reductions 

in evapotranspiration are found. The seepage zone 

east of the Hondsrug clearly manifests itself as a 

zone where reduction in evapotranspiration is negli-

gible. More towards the east reductions vary between 

those found on the Hondsrug and in the seepage zone. 

In this area reductions coincide more or less with 

the elevation of the soil surface. Differences in 

elevation are related with differences in soil map-

ping units and consequently with differences in soil 

physical units while depth of the surface water lev-

el plays a role too. With the aid of the pattern of 

reduction in transpiration, the map of soil physical 

units and the elevation map an estimation of the 

average reduction in evapotranspiration on 4 August 

could be established for four typical situations. 

These four situations were then simulated with SWAMP 

during the year 1982. The simulated reductions in 

evapotranspiration are compared with reductions de-

rived from the heat images (Table 6.4). The agreement 

is very good, except for soil physical unit I where 

the simulated reduction in evapotranspiration is too 

high. This is probably caused by the choice of the 

K(h
P 
 )-relationships for the peaty subsoils. lhey were 

calculated from granular analysis and organic matter 

content, but this validity for soil layers with high 

organic matter content could not be verified with 

experimental data. 

The most common soil physical units between the 

sandy ridges are VII and XI (improved). Due to differ-

ences in soil physical properties caused by soil im-

provement and differences in elevation the heat im-

ages show much variation. Therefore the reduction in 

evapotranspiration derived from the heat images var-

ies between 30 and 60%. 

A small region with peaty soils was considered 

more closely. In this area the influence of soil sur-

face elevation on crop evapotranspiration reduction 

was evident. Improved peaty parcels on the highest 

parts showed a reduction of 70% while the same soil 

in the lower places showed a reduction of 40%. The re-

ductions in evapotranspiration, calculated with SWAMP, 

are 70% and 15% respectively. 

The reduction in evapotranspiration of an in-

proved soil with a surface level of 9.40 m above 
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Table 6.4. Comparison between reduction in evapotranspiration of potatoes with complete soil cover on 4 August 
1982, derived from infrared heat images with the reduction calculated with the SWAMP-model for four situations 

Location Soil physical and hydrological properties 

 

Reduction of Et,p (%) 

     

 

soil 	root seepage 	surface water 
physical depth 	 level during 

unit 	 summer 

(cm) 	(mm•d-1 ) (cm below surface) 

 

heat 	SWAMP 
images 

VIII 

VIII 
VII/XI 

'Honds rug' 
Seepage zone adjacent to the 'Hondsrug' 
Sandy ridges 
Between sandy ridges 

20 -1.0 500 90 80 
30 1.0 90 20 50 
20 0.0 130 70 80 

40/20 0.0 90-130 30-60 40-60 

Ordnance Datum (1.00 m above summer surface water 

level), obtained with SWAMP, was 40% while the non-

improved profile under the same circusstances gave 

70% reduction, both in agreement with the heat image. 

In another part three leveled and drained par-

cels with the surface level about 0.80 m above summer 

surface water level, and parcels with a surface lev-

el more than 2.00 m above summer surface water level 

were present. They gave a reduction in evapotranspi-

ration from SWAMP of 15% and 80% respectively. The 

hydrological situation for the latter can be com-

pared with the 'Hondsrug' area for which in Table 

6.4 a reduction in evapotranspiration of 80% is given. 

From the comparison between reductions in evapo-

transpiration derived from infrared heat images and 

reductions derived from SWAMP, the following conclu-

sions can be drawn:  

- the simulated effects of differences in elevation 

agree with the results of the heat images. This is 

a good indication for a proper hydraulic conductiv-

ity of the subsoil; 

- the effects of soil improvement on soil physical 

properties are derived from a number of assumptions 

(see Chapter 4). Validation with heat images indi-

cate that these assumptions are reasonable; 

- the unsaturated hydraulic conductivity of unit I 

is probably underestimated by the Bloemen method. 

In general, heat images proved to support the 

results obtained from the SWAMP-model. 

Table 6.5. Most important differences and agreements between the models SWAMP and SWADRE (Van Walsum and Van 
Bakel, 1983) 

Description 
	

SWAMP 
	

SWADRE 

Discretization of soil profile 

Calculation of groundwater flow 

Calculation of surface water 
level 

Determination of target level 

Calculation of Et,p 

Calculation of reduction in Et  ,p 

Calculation'of h f 

Lower boundary condition  

root zone + subsoil 

quasi-steady-state 

from water balance of 'wijk' and 
secondary system 

from groundwater depth and soil 
water in root zone 

boundary condition 

Et  = f(gr ,Et,p) 

from water balance of subsoil and 

Ps 

vb  = vd  + va  

vd = f(h *  h* ) f' o 

v
a  = f(h *  h * ) f' o  

20 compartments, each with a 
thickness of 0.10 m 

non-steady-state 

from water balance of 'wijk' 

ib id 

from meteorological data and 
erop parameters 

Et  = iI 1  f(hp ,Et,p) 

(I is number of compartments in 
root zone) 

from water balance of whole soil 
profile 

vd = vd + va 

vd  = f(hf ,h0) 

va  = f(hf) 
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6.5. COMPARISON OF SIMULATION RESULTS OF SWAMP AND 

SWADRE 

Although comparison of results of a model with 

those of another model cannot be classified as a real 

verification, the confidence in a model increases 

when both models give similar results. SWATRE was 

verified for many situations (see e.g. FEDDES et al., 

1978 and De GRAAF and FEDDES, 1984). In these applica-

tions, however, the modeled system was restricted to 

the unsaturated zone only. To simulate the effects of 

water supply to the whole cut-over peat area (WERK-

GROEP WATERAANVOER, 1983) SWATRE was extended with 

modules for surface water management and for water 

flow in the surface water system. The starting points 

for these two modules were nearly identical with those 

used in SWAMP. This extended version will be denoted 

as SWADRE. 

The agreements and differences between SWAMP and 

Fig. 6.8. Time series of groundwater depth, hf, during 
1971, 1976 and 1980 simulated with SWATRE and SWAMP, 
respectively 

SWADRE are given in Table 6.5. The main difference is 

that the former is quasi-steady, whereas SWADRE uses 

a non-steady state-approach. Further differences are 

the calculation of reduction in transpiration and of 

the height of the phreatic surface. For a more detail-

ed description of SWADRE, see Van WALSUM and Van BAKEL 

(1983) and KEESMAN and Van RAKEL (1985). 

Both models were applied on potatoes growing on 

soil physical unit XI (improved iWp) and with the 

meteorological data of the period 1971-1982. In Fig. 

6.8 the time series of the depth of the phreatic sur-

face of the years 1971 (dry year), 1976 (extreme dry 

year) and 1980 (wet year), calculated with both 

models, are compared. The agreement is very good. 

The differences during winter periods can be explain-

ed by small differences in simulated open water level. 

Of importance is that the lowering of the phreatic 

surface in the dry years 1971 and 1976 are almost 

identical. This fact is a strong evidence that the 

quasi-steady-state approach of the unsaturated ground-

water flow in SWAMP is acceptable. In autumn the rise 

of the phreatic surface, calculated with SWAMP, starts 

earlier than with SWADRE. 
Even more important than a good agreement be-

tween groundwater depth is the agreement between the 

effects of surface water management. For that purpose 

both models were fed with two different ways of sur-

face water management, viz. 1) conservation and 2) 

water supply with a maximum rate of 1.5 mm.d 1 . The 

results are given in Table 6.6. In general, the cor-

respondence between the results of both models is 

good, especially in case of water supply. Only during 

the dry year 1976 SWADRE gives a significantly higher 

value for Et under conservation. The effect of water 

supply, calculated as the difference in Et , is also 

shown. SWAMP clearly shows a higher effect of water 

supply in dry years. This difference can partly be ex-

plained by the fact that in SWAMP the water supply 

only depended on the water balance of the surface wa-

ter system. As soon as the surface water level in 

spring dropped below a particular target level, water 

supply started. In the SWADRE-model the water supply 

was also dependent on the amount of water in the root 

zone. 
The average seasonal amounts of water supply 

needed, Evo p , were 57 mm and 71 mm for SWADRE and 

SWAMI,  respectively. The average efficiencies of water 

supply, elw , are 10.5 and 13.2% for SWADRE and SWAMP 

respectively. The efficiency calculated with SWAMP is 

somewhat higher mainly because the increase in trans-

piration is significantly higher (9.4 mm•a. -1  compared 

with 6.0 mm-a -1 ). 

From the comparison between the simulated results 
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Table 6.6. Comparison of yearly values of Et , simulated with the extended SWATRE-model and with the SWAMP-model, 
for two alternatives of surface water management 

Year Conservation 

Et calculated with 

Maximum supply 1.5 mm•d-1 

 Et calculated with 

Effect of water supply (mm•a -1 ) 

SWADRE SWAMP SWATRE SWAMP SWADRE SWAMP 

1 2 3 4 5 6 7(= 5-3) 8(= 6-4) 

1971 329 302 297 313 316 11 19 
1972 295 291 294 290 294 -1 0 
1973 298 282 276 284 280 2 4 
1974 301 298 298 300 300 2 2- 
1975 336 294 293 315 314 21 21 
1976 338 299 284 328 328 29 44 
1977 274 265 257 267 268 2 11 
1978 275 273 270 274 273 1 3 
1979 250 248 249 248 249 0 0 
1980 237 227 227 221 222 -6 -5 
1981 248 249 248 250 248 1 0 
1982 308 282 277 292 290 10 13 

Wan 295 275.7 272.5 281.7 281.9 6.0 9.4 

Average seasonal water supply, E.v.() 	(mm) 
Average supply efficiency, él; (%) 'P  

57 	71 
10.5 	13.2 

of SWADRE and SWAMP the conclusion can be drawn that 

their behaviour is similar. Evidently, the quasi-

steady-state approach used in SWAMP is pennissible. 

The conclusion that SWAMP is suitable for sim-

ulating the effects of different ways of surface wa-

ter management is risky, because a number of simpli-

fications and assumptions are used in both models. 

Important simplifications in this respect are ignor-

ing hysteresis and non-uniformity in horizontal di-

rection that may cause a lower capacity to store 

precipitation surplus in the unsaturated zone and a 

constant thickness of the root zone, independent of 

crop growth and soil water conditions. The most im-

portant assumption is that the relation between soil 

water pressure head and reduction in transpiration is 

independent of the growing stage. 

6.6. REGIONAL GROUNDWATER FLOW IN SWAMP 

In Chapter 5 a method to take into account the 

effects of regional groundwater flow in SWAMI) has 

been discussed. By running FEMSATS with different 

values for the flux through the phreatic surface, v f , 

and open water level, h o , the relation va  = 

was established. It should be reminded that v f is de-

pendent on regional groundwater flow. As already 
pointed out one may expect differences in Et  from 

differences in soil water availability. Because there 

is a regional pattern of soil mapping units, it is to 

be expected that there will be systematic differences 

in vf too. 

If a stationary model is applied, a unique rela- 

tionship vf  = f(Wi-11'(;) is used. A consequence of this 

is that the calculated values for 11-11*0  for high val-

ues of vf  are overestimated. This causes a frequency 

distribution of h-11(*)  that is different from a sta-

tionary model (see e.g. WESSELING, 1969). The differ-

ence derends on the time constant T. If T would be 

the same throughout the area, this phenamenon would 

not cause a distortion of the correlation between 

heights of the phreatic surface on different places, 

but there exists a spatial variability in T and p  and 

hence in T. 

The variation with time of the surface water lev-

el is taken the same in all sections. In practice, the 

surface water level in a particular section will be 

manipulated according to the groundwater depth in that 

section. Hence, the surface water levels may differ 

in different sections, their fluctuations will differ 

both in phase and amplitude. 

Suainarizing one can say that differences in v f , 

T and h*o  between the sections are caused by differ- 

ences in Et, T and surface water management. To find 

out in how far these differences influence the final 

results, cases with extreme differences in soil water 

availability, T and h o  have been simulated by SWAMP 

over the period 1971-1982. 

As extremes for soil water availability the soil 

physical units XI (improved iWp) and VIII (11121) that 

give a long term reduction in potential transpiration 

of 8% (24 mm) and 25% (73 mm), respectively, have been 

compared. Both units have been simulated with exactly 

the same input data, type of water management, etc. 

The computed values of h*f  in unit VIII were used to 
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Fig. 6.9. The influence of soil physical unit on sim-
ulated daily h;-values of units VIII and XI 

derive a frequency distribution. For each frequency 

class of 10 cm the simultaneously occurring values of 

h *  in unit XI were selected and their mean value com-

puted. These means are plotted in Fig. 6.9 against 

the means of the frequency classes of unit VIII. In 

case there is no systematic influence of soil type 

the points in Fig. 6.9 will fall on the 45°-line. How-

ever, as a consequence of the higher storage capacity 

both the lower and higher values of h; of unit XI 

fall above this line. In the latter case better cap-

illary rise and consequently higher values of Et  give 

unit XI a deeper groundwater table than unit VIII. 

The effect of a better capillary rise can be 

taken into account by introducing v f  as a function 

of h; in case vf  > 0 (see Chapter 5). If such a cor-

rection is made, the remaining maximum systematic 

error in h*  can be estimated to be 0.05 m. In this 

estimate, the number of simulations in each class has 

been taken into account. 

For extremes of T, the simulated values of h; of 

unit XI with T = 300 days and with T = 100 days have 

been compared for the period 1971-1982. The surface 

water level was kept constant at 1.40 m below soil 

surface, as long as the height of the phreatic sur-

face was above this level. Fig. 6.10 gives the re - 

sults, obtained as described above. The relation should 

follow the dashed line in Fig. 6.10, at least at low 

. h*f  The simulated values of h *  do not obey this rela- 

tion. 

According to the steady-state approach used in 

FEMSATS, the points for the given T-values should fall 

on the dotted line in Fig. 6.10 with a slope 1:3  
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Fig. 6.10. The influence of drainage resistance on 
simulated daily h-values of soil physical unit XI 
with T = 300 days and T = 100 days. Also depicted 
are the relationship according to the steady-state 
theory and one point from the non-steady-state cal-
culations 

through the point (1.40, 1.40). 

The difference between the steady -state approach 

and the non-steady-state one used in SWAMP will in-

crease with increasing discharge intensity (WISSELING, 

1969). 

For Dutch conditions WESTPHAL (1981) established 

a relationship between the time constant T (= uT) of 

the groundwater system and discharge flux for partic-

ular recurrence times of the flux. This relationship 

is given in Fig. 6.11 for a recurrence time of once 

a year. 

With the aid of Fig. 6.11 it is possible to es- 
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Fig. 6.11. Relationship between time constant of the 
saturated system and the discharge intensity with a 
recurrence time of once a year for daily precipitation 
in De Bilt during 1913-1963 (Westphal, 1981) 
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Fig. 6.12. The influence of differences in surface 
water management in teams of simulated daily 11 .(;-val-
ues for soil physical unit XI with T = 100 days and 
with T = 300 days 

tablish the theoretical relationship between h; in 

extreme wet periods for the two cases. With m = 0.10 

and T = 300 days T is 30 days and with T = 100 days 

and p = 0.10 T becomes 10 days. The corresponding 

discharge intensities in Fig. 6.11 are 4.1 and 6.2 
1 mm•ol , respectively. For the given T-values the val- 

* * 
ues for hf-ho are -1.23 and -0.62 m respectively. 

When h*0  is 1.40 m below soil surface, h; becomes 0.17 

and 0.88 m below soil surface respectively. This com-

bination is given in Fig. 6.10 as a result of the 

non-steady-state approach. It agrees very well with 

the simulated relationship. 

In dry periods with high values of h; the surface 

water level is assumed to remain at 1.40 m below soil 

surface as long as there is discharge. In case there 

is no discharge, the surface water level will further 

fall and will approximately equal the phreatic level. 

Thus the points will came close to the 45°-line. 

Taking into account the frequencies of the dif-

ferent h *-values, a reasonable estimation of the max-

imum systematic error in groundwater depth obtained 

from FEMSATS, is 0.10 m. 

Finally the influence of differences in surface 

water management has been investigated by simulating 

required surface water levels in case of water supply 

for two situations: soil physical unit XI with T = 

100 days and 300 days respectively. Due to difference 

in drainage resistance, one may expect difference in 

surface water management. The simulated data for the 

two cases are plotted in Fig. 6.12. Only for low val-

ues of the depth of the surface water level devia-

tions from the 45°-line occur. 

From the results mentioned above it can be con-

cluded that the maximum systematic error in h; per 

section is 0.15 m. Calculations with FEMSATS for 

sections with an unfavourable ratio between area and 

length of outer boundary, showed that the effect of 

a change of 0.15 m in depth of the phreatic surface 

on the regional flux va was 0.24 mm.(1-1 . In these 

calculations the phreatic levels of the surrounding 

sections were kept constant. 

The systematic error of 0.24 mm.d .1  in va  is a 

maximum estimate. In practice the difference in soil 

profiles is less pronounced. Besides, during summer 

when effects of surface water management are impor-

tant, the depth of the phreatic surface is relatively 

low. Consequently the systematic error caused by dif-

ferences in drainage resistance is lower too. A final 

remark in this respect is that the systematic error 

in va is calculated without taking into account feed-

back effects, i.e. a deviation in phreatic surface 

causes a change in flux that reduces it. 

The final conclusions from the validation is 

that the conceptual approach of modeling the lower 

boundary condition of SWAMP is acceptable, keeping in 

mind other uncertainties and assumptions which are 

inherent to each modeling process. The results of a 

sensitivity analysis with SWAMP that will be described 

in Chapter 8, support this important conclusion. 
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7. DAY-TO-DAY SURFACE WATER MANAGEMENT AND 
ESTABLISHMENT OF OPERATIONAL RULES 

7.1. CHOICE OF RULES FOR THE DAY-TO-DAY SURFACE WATER 

MANAGEMENT 

The ultimate goal of manipulating surface water 

levels in an area like 'De Monden' is improvement of 

the soil water conditions for crop growth. Therefore 

it is logical to relate the day-to-day surface water 

management and soil water conditions by means of vari-

ables that are determining the latter. From the dis-

cussions in Chapter 5 it followed that probably the 

best choice for these variables are groundwater depth 

and soil water storage in the root zone. 

A mathematical description of the way surface 

water management is coupled with groundwater depth 

and soil water storage in the root zone should result 

in operational nales for the day-to-day surface water 

management. The latter actually means a frequent 

Change in surface water level and, if water supply 

from outside is possible, a frequent adjustment of 

the supply rate in order to obtain the best possible 

soil water conditions for plant growth. 

According to the scheme given in Fig. 5.2 the 

development of a model starts with a perceptual scheme 

of the real conditions. Concerning surface water ma-

nipulation, one can formulate the following starting-

points and assumptions: 

a. Under climatological conditions prevailing in the 

Netherlands there is a precipitation surplus during 

winter (October - March) and an evapotranspiration 

surplus during summer (April - September). In the 

former period drainage is necessary and the lower 

the surface water level, the better the drainage. 

The water delivering capacity of the soil during 

summer is not always enough to meet evapotranspi-

ration surpluses. Shortages are influenced by 

depth of drainage and can be reduced by creating 

high open water levels through activation of sub-

irrigation. Hence, the general trend in surface 

water level will be low during winter and high 

during summer. 

b. Because of variation in weather conditions the op-

timal surface water level will often deviate from 

the general trend. Management of the surface water 

level should depend on soil and crop conditions 

and therefore the optietal surface water level will 

vary continuously. 

c. In principle, the manipulation of the surface wa-

ter level could be performed automatically by 

means of sensors that observe conditions like 

soil moisture, depth of water table and open wa-

ter level. This method, however, is too sophisti-

cated to apply in practice for the time being. 

Daily adjustment of all weirs in a waterboard 

region will be too expensive, because it would ask 

a daily visit to all weirs and observation points. 

Therefore an a priori choice of the frequency of 

adjustment of the most desired surface water lev-

el (= target level) must be set. In our case we 

assumed once in 7 days reasonable. 

From the above points it follows that the estab-

lishment of operational rules is an optimization 

problem. The best approach to solve this problem 

therefore seems to be the use of optimization tech-

niques like linear and dynamic programming. As ob-

jective function one could use a min - max objective, 

i.e. minimizing damage due to waterlogging and maxi-

mizing Et . To be able to apply optimization in the 

present case a one-to-one relationship between the 

change in surface water level, Ah*o , on one hand and 

change in groundwater depth, Ah;, and water storage 

of the root zone, AWr , on the other hand is necessary. 

In principle, the relationship between Ah *0  and Ah; 

can be established like an instanteneous unit hydro-

graph (IUH). Only with a constant value for the 

phreatic storage coefficient, u, and for the drainage 

resistance, T, the IUH-function would be independent 

of the value of .h; and the mathematics of linear sys-

tems is applicable. In practice, however, both u and 

T will depend on h;. 

The relationship between Ah *0  and AWr  certainly 

has no one-to-one correspondente. A change in the 

surface water height changes the groundwater depth, 

causing a change in capillary rise, v z , and conse-

quently in W. Moreover, vz  depends on Wr  and there-

fore the relationship Ahó - AW r  is highly non-linear. 

Because Wr is also influenced by precipitation and 

evapotranspiration, it is not predictable. Also dy-

namic aspects are involved: the history of W r , and 

not only its actual value, determines the total trans-

piration of the crop. Application of an optimization 

technique therefore has to be rejected. 
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Another possibility to establish rules for sur-

face water management is a real-time approach. Sup-

pose that the frequency of changing of the target lev-

el is once per 7 days. Given the conditions at time t, 

the best surface water level between t and t+7 has to 

be defined, taking into account the stochastic nature 

of the weather during that period. The latter can be 

done by a stochastic model or by the Monte-Carlo 

method. Using the Monte-Carlo method a representative 

number of series of weather conditions during t and 

t+7 could be simulated with the SWAMP-model, yielding 

a frequency distribution of effects of different ways 

of surface water management. From these results the 

best possible target level could be chosen. The whole 

procedure has then to be repeated for the next period. 

This approach is called real-time approach or predict-

ive simulation. 

Because of storage capacity changes in the un-

saturated zone the effect of a certain change in sur-

face water level at time t is not restricted to one 

week. With a time constant T = 20 days for the whole 

system in SWAMP, it takes approximately 50 days be-

fore 80% of the final effect of an imposed change is 

reached. Suppose that this is 7 weeks and each week 

the operator can choose between 3 possibilities: 

target level + 0.10, 0 and -0.10 meter. When the max-

imum variation is 0.50 m, the number of possible 

strategies in these 7 weeks varies between 707 and 

1430. For each range a Monte-Carlo simulation has to 

be carried out, each simulation yielding a frequency 

distribution of possible effects. Then all the fre-

quency distributions have to be analyzed and it has 

to be detennined which of them are connected with 

raising, with lowering and with keeping the surface 

water level constant during the next period. Analysis 

of these three classes of frequency distributions 

then has to yield the best choice at time t. Because 

the amount of work would be far too great for practi-

cal application, this approach was also rejected. 

The only possibility left is then the empirical 

approach. A historical series of weather conditions 

was simulated with SWAMP and by a trial and error pro-

cedure the operational roles were improved. 

The first step in the empirical approach is mod-

eling the hydraulic properties of weir and inlet 

structure with respect to surface water level manipu-

lation. The movement of an automatic weir is governed 

by two electrodes with a fixed height difference of 

4 cm (Fig. 7.1). When the surface water level is be-

low s 2, the weir is raised and when it is above s 1 
the weir is lowered. To prevent oscillations, the 

speed of these movements is restricted. 

The weir is modeled as follows. Each week the 

Fig. 7.1. Schematic presentation of the principle of 
an automatic weir 

target level may be set by a shift of s i  and s 2 . The 

range between lowest and highest target level 

is 0.70 m. This range is divided into phases (steps) 

of 0.10 m: phase 0 stands for the lowest level (win-

ter level), phase 1 is winter level + 0.10 m, etc. 

Phase 5 (winter level + 0.50 m) is the normal level 

during the growing season and is called summer level. 

Phases 6 (winter level + 0.60 m) and 7 (winter level 

+ 0.70 m) are only used in periods with a considerable 

water shortage in the root zone and sufficient water 

supply. To maintain these target levels the weir trest 

level must have a wider range in order to take into 

account upstream heads under discharge conditions. 

The splitting of the target level range into a 

limited number of phases reduces the number of possi-

bilities, which is favourable for both modeling and 

practical application. 

The general trend in target level, h'j, re  is low 

in winter and high during summer (Fig. 7.2). In between 

transition periods must occur, dependent on weather 

conditions. 

During winter, the rille for surface water manage-

ment has been taken as simple as possible: phase 0 

when the groundwater depth, h;, is below a certain 

level and phase 2 when h; is higher. In this way 

overdrainage is prevented. Practice showed that during 

dry winters the groundwater depth can become lower 

than is necessary for a good workability in spring. 

The timing of the beginning of the transition 

period in spring, t 1 , is very important because a too 

early rise means extra risks by waterlogging and a 

too late rise might result in shortages later on. Nor-

mally the precipitation surplus decreases at the end 

of the winter period, hence the depth of the ground-

water increases. Therefore the groundwater table can 

be used as an indicator for the beginning of the 

transition period. A further operational rille is that 

the lower the groundwater table the higher the sur-

face water level is set. 

During the transition period the surface water 
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management has been fonnalized by means of a table 

that couples the depth of the groundwater table with 

the target level. An example of such a table is giv-

en in Table 7.1. These tables may differ per soil-

physical unit and are found by 'trial and error', 

as will be discussed below. The possibility is in-

cluded to make a distinction between a more or less 

constant or.dropping groundwater table and a rising 

one. A groundwater table is considered as rising 

when its depth in the preceding week decreased 

0.05 m or more. In the case of rising groundwater 

preference is given to a lower target level. 

During summer the surface water management has 

been modeled by coupling the target level with a) 

the groundwater depth and b) the water storage in 

the root zone. For this coupling with the groundwater 

depth the tables for the transition period are used. 

Although during this period the groundwater table 

normally is deep, too shallow water tables can oc-

cur. By relating the manipulation of the surface 

water level to the groundwater table the operator 

Table 7.1. Example of groundwater depth, li *f, and tar-
get levels, 11, m  

Groundwater depth hf 

(m below soil surface) 

Phase Target level h'M 

(m below soil surface) 

>0.60 1 1.30 
>0.70 2 1.20 
>0.80 3 1.10 
>0.90 4 1.00 
>1.00 5 0.90 
>1.10 6 0.80 
>1.10 7 0.70 

can react on high or rapidly rising water tables by 

lowering the surface water level. 

As an indicator for the water storage in the 

root zone the water deficit in the root zone, Wr 
 has been taken: 

Wrd = W>re (100) - Wr 
	(mm) 	 (7.1) 

where Wr e (1.00) is the water storage in equilibrium 

with h; 1.00 m and Wr  the actual water storage. 

For phases 4, 5, 6 and 7, Wr d  must exceed certain 

values, as is illustrated in Table 7.2. The reason 

for this is that high surface water levels give a 

higher risk of waterlogging after heavy rainstonns. 

As long as there is a storage possibility in the root 

zone, this risk is small. Phases 6 and 7 are only 

allowed after t = t3, which is fixed at 1 July. 

In autumn, too early lowering of the surface 

water level may result in a lower transpiration. If 

the start is tbo late, it may result in wetness dur-

ing harvesting. In the model t4  depends on Wr d , as 

is illustrated in Table 7.3. This table is also pro- 

Table 7.2. Example of water deficit in the root zone 

h 
dring the growing season, Wr,d, and target levels, 

o,m 

Water deficit 	Phase 	Target level 

(mm) 	 (m below soil surface) 

h* m = 1.00 o, = 0.90 
= 0.80 and 0.70 
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ibid wi h shift 

yes 

ACAP = 0. 

v  

STR1 = STR 

STR = 140 STR = 120 

supply = 0. 

weir level 
a bound. cond. 

no 

yes 
v  

read weir level 

read ACAP 

read crest level 

determine STR from 
relation STR GWT 

no shift 

Determination supply rate 

supply next week determined 
from supply for change in level 

and supply for sub-irrigation 

. no supply before 1 May 

no supply if V > VC 

• supply = ACAP if V < VM 

• supply = ACAP x 11. -IV - VM)/(VM - VC) 

• no supply if < 0.3 

adjust end of 

growing season 
with SWR 

SWR = soil water shortage 
in root zone 

no 

Weekly adjustment of target level 

I = number of day (I = 120 is 1 May) 

Relations see table 
adjust STR for 

water in root zone 

COMMENTS 

Weir crest in 
cm- surface 

ACAP = supply capacity 
in mm.c1 .1  

Store old level 

STR is target level 
in cm - surface 

Fl = groundwatertable depth 

in cm - surface 

H8 = groundwatertable depth at t - 8 

H1 = groundwatertable depth at t - 1 

Relations see table 
GWT = groundwatertable depth 

When e.g. sub-irrigation 
equals capillary rise 

target level can not 
be raised 

V is water storage 
in root zone 

VC is moisture storage 
in root zone 

as upper boundary 
for supply 

VM is ibid as lower 

boundary for maximum 
supply 

Fig. 7.3. Flow chart of subroutine MANAGEMENT of the SWAMP -model 
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Table 7.3. Example of the dependency of the beginning 
of the transition period in late summer, t4, on the 
simulated water deficit in the root zone, Wrd 

Wr,d 
	 t

4 

(day nr.) 

<10 
	

250 ( 5 September) 
<20 
	

270 (25 September) 
<30 
	

280 ( 5 October) 
>30 
	

290 (25 October) 

duced by 'trial and error'. 

The operational rules for the surface water level 

discussed so far have been purely based on hydrolog-

ical grounds. Running a model with these operational 

rules may result in large jumps in target level. In 

reality, this may cause too high flow velocities and 

hence erosion of the sidewalls of the watercourses. 

Therefore the change in target level is limited to 

0.10 m a time, except when the change according to 

the above rules is 0.30 m or more. In that case the 

change is 0.20 m a time. 

Operational rules set for the inlet structure are 

as follows. Water supply is only possible after t = t 2 

 (see Fig. 7.1), which is a priori fixed at 1 May. The 

maximum supply rate, s a'1 , is made dependable on Wr,d  

as follows: 

	

sM(t) =0 if Wr,d < wl 
	 (7.2) 

sin (t)  = sm if Wr,d > w2 
	 (7.3) 

sr'n(t )  = si.{1  - (w2 - wrd)/(wi - Wr,d)/ if  

	

wl ` Wr,d " w2 
	 (7.4) 

where w 1  and w2  are fixed amounts. In this way a grad-

ual increase or decrease in supply rate can be reach-

ed. 

At time t the water supply rate for the period 

between t and t+7 is found from the water balance of 

the surface water system: 

vd,p (t) = mink(t), {(vd (t) + vd (t+7))/2 + 

	

+ (h(*)t (t) - 	 m h*o  (t)}/(at .7) + 

	

+ {hj. ,s (t) - 	11:; ,m(t)}/(a a .7)] 
	

(7.5) 

So the total water supply rate is the sum of the wa-

ter needed for sub-irrigation and that needed for the 

change in water volume in the surface water system. 

Because vd
(t+7) is not known, the best estimate is 

the flux which corresponds with h *f (t) and 	 t h *o 
 (t+7). 

The latter is equal to 	 m  h*o m (t) or, in case vo  
is p 

limited by sl ea , it is calculated from eq. (7.5). 

An alternative solution for the determination of 

vo,p (t) could have been the incorporation of a feed- 

back between discharge over the weir, v ouw , and v . ' 0,w , 	o,p 
E.g. vo,p  = sm as long as vo,w  = 0 and vo p = 0 when 

> 0. In practice this would involve either fre- 
o ,w 

quent observation of the weirs and a frequent adjust-

ment of the inlet structure or monitoring and remote 

control of weir and inlet structure. Furthermore no 

water is supplied when v < v l , where v 1  is a pre- 
o,p 

set small water supply rate. 

The above operational rules are handled in a 

separate subroutine of SWAMP, called MANAGEMENT. To 

compare different ways of surface water management 

three options for water management have been incor-

porated in this subroutine, namely: 

- weirs with a fixed crest height; 

- adjustable weirs without water supply (water con-

servation); 

- adjustable weirs with water supply. 

For verification purposes a fourth option is 

added with the surface water level in the tertiary 

system as an input variable. Fig. 7.3 gives the flow 

chart of the subroutine MANAGEMENT. 

7.2. ESTABLISRMENT OF OPERATIONAL RIJLES 

In the operational rules discussed in the pre-

vious section various parameters are incorporated 

that have to be known beforehand. The determination 

of values for these parameters started with the def-

inition of a soil physical - hydrological situation 

representative for the research area and will be re- 

ferred to as reference. For this purpose the following 

choices were made: 

- soil physical unit XI (improved iwp) 

- va  = 0.0 mm.d -1  (no seepage) 

- T = 200 days 

- nf  = 0.8 (shape factor for phreatic surface) 

- cd  = 0.003 (discharge coefficient for weirs (eq. 

5.12)) 

- small canals in a good state of maintenance 

- standard crop of potatoes for starch production 

For this reference case three different situa-

tions of surface water management have been consider-

ed: 
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a) weir with a fixed crest with a height equal to 

phase 0 (winter level). The average yearly trans-

piration for this zero situation is denoted as 

To (mm.a
1 ); 

b) adjustable weir and no water supply, representative 

for water conservation. The average yearly trans-

piration is denoted as Tc (mm.a 1 ); 

c) adjustable weir with conservation and water supply 

with a supply capacity of 1.5 mm•d 
1 . The average 

yearly transpiration and amount of water supply is 

denoted as Ts and vo,p respectively (rmn•a.
-1 ). 

The effect of conservation is defined as: 

ATc  = Te  - To 	(mn-a-1 ) 
	

(7.6) 

The water supply situation could have been com-

pared with the zero situation, but because water sup-

ply implies conservation, its effect is compared 

with the conservation case, so: 

ATs  = Ts  - Tc 	(mm.a 1 ) 
	

(7.7) 

Another indicator is the average supply effi-

ciency defined as: 

ew = (ATs /vo,p  ) . 100% 
	

(7.8) 

For the above situations a number of different 

water management strategies were chosen. For each  

strategy the hydrological consequences were simulated 

with SWAMP for the years 1971-1982, yielding average 

values for To'  Tc  and Ts. These values were corrected 

for waterjogging damage (see Section 8.7). 

The results of the procedure are given in Table 

7.4. In run 0 rises in open water level due to out-

flow and drops due to sub-irrigation in periods with 

low groundwater depths are accounted for. In run 1 an 

automatic weir that keeps the surface water level con-

stant is introduced. The positive value of AT c  is 

caused by reduced damages in spring. To maintain the 

level a supply of 80.9 mm in summer is necessary; 

its effect on transpiration is surprisingly high (AT s 

 = 10.9 mm•a-1 ). In run 2 the target level is the same 

each year. From 15 March on the target level is raised 

with 0.10 m each week till the slimmer level is reach-

ed. From 15 August on the target level is lowered with 

0.10 m each week till the winter level is reached 

again. Only when the groundwater depth becomes less 

than 0.60 m below soil surface, the summer level is 

lowered. In the introduction this type of water manage-

ment has been called complaint system. It gives a 

rather high conservation effect: ATc  = 10.0 mm.a 1 . 

It requires a water supply of 96.0 mm•a. -1 and causes 

an additional transpiration, ATs , of 12.6 mm•a. -1 . 
A water management strategy in which the surface 

water level depends on the actual conditions is that 

used by the waterboard 'De Veenmarken' (run 3). It 

has the following characteristics. Until t 1  = 50 a 

winter level of 1.40 m is applied. After t 1  the target 

Table 7.4. Results of simulations with SWAMP to establish operational rules for the surface water management. 
The properties of the reference case used with these simulations are given in the text 

Run 	 Description 
nr. 

T, 	ATc 	ATs  op 
(mm.a -1 ) 	(nn.a -1 ) 	(mm.a-1) 	(mm.a-1) 

w 
(%) 

0 	weir with a fixed weir crest at 1.40 m below soil 
surface (zero situation) 

1 	11;,' ,, constant at 1.40 m below soil surface 

2 	h*0 m  in winter 1.40 m below soil surface, in summer 
0.9d m below soil surface unless hf < 0.60 m 

3 	waterboard strategy with small modification 

4 	as 3 + supply depending on Wr,d 

5 	as 3 + coupling between hf and h c*,, ,m  according to 
Table 7.7 

6 	as 5 + coupling between Wr, d and 11:2', ,m  according to 
Table 7.8 

7 	as 6, t4 3 weeks earlier 

8 	as 6, t4 6 weeks earlier 

9 	as 7, t1 15 March 

10 	as 7, shift of 0.20 m in weir crest and phases 
('wetter' management) 

11 	as 7, more restrictive demands for h7 to allow the 
different phases 

258.3 

258.3 2.4 10.9 80.9 13.4 

258.3 10.0 12.1 96.0 12.6 

258.3 14.9 10.4 110.5 9.3 

258.3 14.9 8.4 93.3 9.0 

258.3 14.1 9.4 92.3 10.2 

258.3 14.1 9.3 92.5 10.1 

258.3 14.4 9.1 70.8 12.8 

258.3 14.4 8.2 41.4 19.8 

258.3 10.9 13.7 85.0 16.1 

269.8 4.1 7.5 57.3 13.1 

258.3 8.4 12.7 83.3 15.2 
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Table 7.7. Demands for the groundwater depth, 14, to 
allow different target levels, 11 (),m , as used in run 
5 of Table 7.4 

Table 7.5. The relation between groundwater depth hf 
and target level 1.1 .; m  as applied by the waterboard 
'De Veenmarken' and'used in run 3 of Table 7.4 

Groundwater 	Phase Target level 	Remarks 
depth 

(m below soil 	(m below soil 
surface) 	 surf ace) 

>0.80 1.30 
>0.85 2 1.20 
>0.90 3 1.10 
>1.00 4 1.00 
>1.10 5 0.90 
>1.20 6 0.80 only pennitted 
>1.30 7 0.70 in July and Au-

gust 

Table 7.6. The dependency of t4 on the water deficit 
in the root zone, Wr  d, as applied in run 3 for the 
determination of t4 ' 

Water deficit 	 t4 
in root zone 

(mm) 	 (day nr.) 

260 (15 September) 

305 - ((30 - Wr d)/20) (305-260) 

305 (1 November) 

level depends on groundwater depth. For modeling pur-

poses the used relation is translated into figures 

given in Table 7.5. The time at which the change to 

winter level starts (t 4) depends on the wetness of 

the year. This vague rule is replaced by a relation 

between Wr,d and t4 as given in Table 7.6. 

The consequences of this type of water manage-

ment (run 3) are a significant improvement of AT c , 

but a luwer ATs' The required amount of water (110.5 

mm•a.-1 ) is high and its efficiency (e y,r) is lower. 

In order to achieve a higher water supply effi-

ciency the water supply rate has been made dependable 

on the water storage of the root zone as discussed in 

the former section. The results of run 4 show no sig-

nificant improvement. 

Especially when drainage resistances are low 

and/or the soil permeability of the transition zone 

is low, a groundwater depth of 1.20 m or more rarely 

will occur, because under those conditions sub-irri-

gation will exceed capillary rise. Therefore for run 

5 Table 7.5 has been replaced by Table 7.7. Compared 

with run 4 there is a slight reduction in AT c  and a 

slight increase in both AT s  and ew . 

In run 6 the effects of using a coupling between 

Wr d  and target level (see Table 7.8) are shown. The 

differences with run 5 are negligible. For wetter con-

ditions than modeled in the reference unit the appli- 

Groundwater depth 
	

Phase 
	

Target level 

(m below soil 
	

(m below soil 
surface) 
	

surf ace) 

0.85 1 1.30 
0.90 2 1.20 
0.95 3 1.10 
1.00 4 1.00 
1.05 5 0.90 
1.05 6 0.80 
1.05 7 0.70 

Table 7.8. Coupling between water deficit in the root 
zone, Wr,d, and target level, 	used in run 7 

Water deficit 	Phase 	Target level 
in root zone 

(mm) 	 (m below soil surface) 

<10 0-4 1.40, 1.30, 1.20, 	1.10, 
1.00 

<20 5 0.90 
>20 6,7 0.80, 0.70 

cation of a table like Table 7.8 can be valuable. 

Next the effects of a change in t4  have been in-

vestigated (see run 7) by taking t 4  3 weeks earlier. 

This action definitely reduces the annual amount of 

water supply, vo,p' without a significant reduction 

in ATs' Hence ew increases from 10.1 to 12.8%. 

The effects of taking t 4  6 weeks earlier are 

given under run 8. Compared with run 6 AT s  is slight-

ly reduced, but v0,p  is reduced far more, and ew in- 
creases till 19.8%. Compared with run 7 7\T; is re- 
duced with 0.9 mm•a-1  and v 	with 39.6 mm. The o,p 
marginal efficiency of water supply therefore is 

(0.9/39.6) . 100% = 2.3%. Although this figure is 

very low, it can be calculated that the marginal 

costs of water supply are approximately Dfl 0.035 

per m3 and the marginal returns ablaut Dfl 1.60 per 

m3 (see Chapter 11). Hence water supply will be 

profitable if its marginal efficiency surpasses 

(0.035/1.60) . 100% = 2.2%. For this reason the op- 

erational roles used in run 7 have been adooted in the 

further simulation runs. 

In run 9 t 1 has been made 4 weeks later, i.e. 15 

March. Compared with run 7 ATc  reduces, but this is 

compensated by an increase of AT s . The annual amount 

of water supply, however, increases from 70.8 to 85.0 

mm. This strategy is only interesting when water sup-

ply is not limited. 

A very important question is whether the chosen 

target levels are correct. In run 10 therefore the 

W d  < 10 

10 < Wr,d  < 30 

Wr,d > 30 
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target levels have been raised with 0.20 m. In this 

case the effects of conservation and water supply 

must be compared with the reference situation with a 

weir crest of 1.20 m. Compared with run 7 AT c  de-

creases sharply because of a considerably higher val-

ue of To . For the zero situation a fixed weir crest 

at 1.40 m below soil surface evidently is too low. 

Both ATs and vo,p  become less, so that ew approxi- 

mately remains the same. 

The results of run 10 show that a higher water 

level now takes over the conservation effect which 

itself becomes very small. However, the sum of To , 

ATc  and ATs  in run 10 remains nearly the same as in 

run 7 so that this wetter type of water management 

has not been accepted. 

From the sensitivity analyses (Chapter 8) it 

follows that the results of the model are sensitive 

for changes in the parameters for waterlogging. Be-

cause a proper determination of these parameters is 

very difficult, a more restrictive type of water 

management may be better. Therefore in run 11 the 

different phases are only allowed at groundwater ta-

bles 0.20 m below those used in run 7. This change 

means that phase 1 only is allowed when the ground-

water depth is more than 1.00 m below soil surface, 

etc. Compared with run 7, ATc  now reduces from 14.4 

to 8.4 mm•a-1 , but ATs increases to 12.7 mm•a -1  and 

water supply efficiency becomes 15.2%. The decrease 

in ATc  cannot be compensated fully by an increase in 

ATs .  

The above procedure, although less detailed, 

has been applied to soil physical units IV (iVz) and 

VIII (Hn21). For unit TV no significant differences 

were found. For unit VIII a significant improvement 

resulted from the wetter type of management of run 

10 (a shift of 0.20 m in, the target levels). Table 

7.9 clearly illustrates this. The more favourable 

effects for this type of soil are due to its higher 

drought sensitivity. 

The final result of the 'trial and error' method 

described above is that for all soil physical units, 

except unit VIII, for both conservation and water sup-

ply run 7 is chosen. For soil physical unit VII the 

Table 7.10. Water balance of the unsaturated zone 
during the growing season (1 April - 1 October) and 
groundwater depth at 1 October for the water manage-
ment corresponding to run 7 in Table 7.4 for the 
zero situation, for conservation and for water sup-
ply, averaged over the period 1971-1982 

Zero 
situation 

Conservation Water 
supply 

TEn  (mm) 302.6 302.6 302.6 

E s  (mm) 57.2 57.2 57.2 

Et  258.2 272.2 281.4 

AWr  (min) 2.1 -0.8 -0.1 

AWs  (mm) -81.5 -68.3 -25.7 

7rb  (mm) -66.6 -42.3 10.2 

-17 at 1/10 (m) 1.57 1.47 1.25 

'wetter' type of water management (run 10) is prefer-

red. A review of the model approach and the operation-

al nales applied for the simulation of effects of sur-

face water management are described in the Appendix. 

So far only the effects of conservation on the 

increase in average annual transpiration and the re-

quired amount of water have been discussed. To show 

the effects of water management on separate water bal-

ance terras and on groundwater depths in autumn Table 

7.10 gives data for the unsaturated zone and Table 

7.11 for the surface water system of the reference. 

Compared with the zero situation the lower boundary 

flux, vb , with conservation increases from -66.6 to 

-42.3 mm. This extra flux decreases the groundwater 

depth, giving a higher transpiration. With water sup-

ply, v 	becomes positive, resulting in a consid- 

erably wetter situation and an increase in transpira-

tion from 272.2 to 281.4 mm. The groundwater depth in 

autumn (1 October) rises from 1.57 m in the zero situa-

tion to 1.47 m in the case of conservation and to 1.25 

m with water supply. 

The water balance of the surface water system is 

given in Table 7.11. Because no storage is considered 

in the saturated zone, the inflow into the canals, 

vd , numerically egaals vd  in Table 7.10, though with 

opposite sign. The differences between zero situation 

and conservation are mainly caused by the differences 

in this drainage flux, vd. A lower value of vd  for 

Run 	Description 
nr. 

1 phase 0 is 1.40 m be-
low soil surface, etc. 

2 phase 0 is 1.20 m be-
low soil surface, etc. 

Tc rs. vo ,P ew 

(un•a-1 ) (mm.a-1 ) (nm.a-1 ) (mn.a-1 ) (%) 

197.7 20.7 13.2 46.2 28.6 

214.5 8.5 16.4 53.7 30.5 

Table 7.9. Influence of a shift in 
target levels of 0.20 m on effects 
of conservation and water supply of 
soil physical unit VIII (Hn21) 
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1971 

---  Fixed weir crest 
Conservation 
	 Water supply, s m =1.5 mm• d -1  

0 

3 
1.20 

E 
_1.60 

.c 

200 

1982 

0.40 

0.80 

Table 7.11. Water balance of the surface water system 
during the growing season (1 April - 1 October) for 
the management corresponding to run 7 in Table 7.4 
for the zero situation, for conservation and for wa-
ter supply, averaged over the period 1971-1982 

Zero 
situation 

Conservation Water 
supply 

Ah0t .at (mm) -10.9 

-1.2 

66.6 

-78.7 

-14.4 

-1.8 

42.3 

-58.5 

-8.5 

-1.1 

-10.2 

-72.6 

73.2 

Ah 	.a 	(mm) os 	s 
V-  (mm) d 

(mm) vo w , 
v0 

P 
 (mm) 

1.20 

1.60 

2 . 00 
0 	40 80 120 160 200 240 280 320 365 

day nr 

Fig. 7.4. Effect of different water management sys-
tems on the depth of the groundwater during 1971 
(rather dry growing season), 1980 (wet growing sea-
son) and 1982 (dry growing season) 

conservation results in a lower discharge over the 

weir, vow. With water supply the supplied water, 

of 73.2 mm is used for a decrease in v d of 52.5 v0 ,13 ' 
mm, resulting in a negative value (inflow into the  

soil) over the balance period. Porther the flux over 

the weir increases with 14.1 mm, while surface water 

storage takes the remaining 6.6 mm. 

The effect of surface water management on the 

depth of the groundwater is illustrated in Fig. 7.4, 

in which for three years simulated depths of the 

groundwater for the reference, for conservation and 

for water supply are depicted. 

From the simulation results discussed above a 

number of conclusions can be drawn: 

- the system is rather inert. Consequently the poten-

tial for improving the effects of conservation and 

water supply by refining rules is limited; 

- there is no guarantee that the operational rules ob-

tained by the 'trial and error' procedure cannot be 

improved further; 

- the resulting operational rules are easy to under-

stand and easy to apply in practice. The manager 

can adapt these rules to his own specific circum-

stances; 

- although the efficiency of water supply is low, it 

will be shown in Chapter 11 that nevertheless it 

can be economically justified to bring water to the 

region. 

7.3. COMPARISON OF 'MODEL' SURFACE WATER MANAGEMENT 

AND 1HE MANAGEMENT PERFORMED BY THE WATERBOARD 

'DE VEENMARKEN' 

The final result of improving the operational 

rules was a refinement of the surface water manage-

ment applied by the waterboard 'De Veenmarken'. Hence 

the 'model' water management should.also produce 

better results in other periods than those used for 

the determination of the rules. 

The yeár 1983 offered an opportunity for a check. 

It was an exceptional year; a very wet period from 15 

March until the end of May was followed by an extreme-

ly dry period from June until August. Especially May 

was very wet. To investigate whether the surface wa-

ter management according to the model is satisfactory 

under such circumstances, the year 1983 has been sim-

ulated. The effects of the proposed management have 

been compared with the actual management performed 

by the waterboard 'De Veenmarken'. A detailed report 

is given by Van BAXEL (1984). In the following only 

the most important results are given. 

In Fig. 7.5 the actual course of the surface wa-

ter level is compared with the model results for con-

servation and for supply with a capacity of 2.5 mm•d -1 . 
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Fig. 7.5. Comparison of observed and simulated courses in time of the surface water level during the first nine 
months of 1983 

The 'model' operator starts nearly a month earlier 

in spring to raise the surface water level. In peri-

ods of a high precipitation surplus (e.g. March, May) 

he lowers the surface water level faster than prac-

tice does. One should, however, take in mind that in 

practice high water levels in canals further down-

streams restricted the required lowering of the 

weirs, particularly in May. In the dry period from 

June till August the actual water supply capacity 

was below the'capacity assumed in the model, result-

ing in a somewhat lower actual surface water level. 

Using the actual supply capacity during the lat-

ter period as input, the 'model' management gives an 

increase in transpiration for the standard potato  

erop of 59.2 and 38.2 mm on soil physical units XI and 

VI, respectively, while for the waterboard management 

these data are 54.5 and 30.7 mm. The model management 

therefore gives an improvement of 10 to 25%. It must 

be noted, however, that part of this improvement may 

be due to the too high surface water levels actually 

occurring during the wet period in May. 
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8. SENSITIVITY ANALYSIS OF SWAMP 

8.1. INTRODUCTION 

In this chapter the sensitivity analysis of 

SWAMP is dealt with. In this analysis single param-

eters or complexes of parameters have been changed to 

find their effect on the final results, i.e. the in-

crease in average annual transpiration caused by con-

servation, ATc , by water supply with a maximum supply 

capacity of 1.5 mm-d 1 , AT15 , and the average annual 

efficiency of water supply, ew . The soil physical - 

hydrological unit described in Section 7.2, has been 

chosen as a reference together with one standard crop 

(potatoes for starch production). For the surface wa-

ter management the operational rules given for run 7 

of Table 7.4 were used. 

The sensitivity of soil physical properties, 

drainage resistance, maintenance of small canals, di-

mensions of weirs, magnitude of regional flux and pa-

rameters for waterlogging damage have been investigat-

ed. 

8.2. SOIL PHYSICAL PROPERTIES 

For the calculation of the effects of surface wa-

ter management strategies in the whole region 'De Mon-

den' that will be discussed in the next chapter, one 

soil physical unit was assigned to each section. As 

explained in Chapter 3 this assignment was based on 

the soil map 1:50 000 and an inventory of soil-im- 

Table 8.1. Influence of soil physical unit on trans-
piration, To , on conservation effect, ATc , on water 
supply effect, AT , and on efficiency of water sup-
ply, ew, simulat with SWAMP and averaged over the 
period 1971-1982 

Soil physical unit  

XI VIII VII IV 
(reference) (Hn21) (iWp) (zVc) (iVz) 

(improved (sand) (peaty) (deep (mod. 
peat) peat) deep 

peat) 

To  (mm-a-1 ) 258.3 214.5 229.1 242.7 248.2 

ATc  (om-a-1 ) 14.1 8.5 17.6 8.2 5.1 

ATs  (um-a 1 ) 9.4 15.8 9.6 7.9 8.3 

ew  (%) 13.3 29.4 16.6 10.9 16.3 

proved parcels. Here the sensitivity of the model 

for the choice of the soil physical unit will be 

treated. This has been done by replacing the soil 

physical unit used in the reference by a number of 

other units. 

Table 8.1 gives the results of this replacement. 

The values of To obtained for the case of a fixed 

weir have been given to indicate the differences in 

water delivery capacity of the various soil physical 

units. The considerably lower value of T o  for unit 

VIII causes a higher profit of water supply compared 

with the reference, so that AT
s 
 increases from 9.4 

1 to 15.8 mm•a . To reach this effect a lower amount 

of water is needed, resulting in a high efficiency of 

water supply (29.4%). Soil physical unit VII has also 

a low To' but ATs and ew are lower than unit VIII. On 

the other hand, ATc  is higher compared with the ref- 

erence. Soil physical unit I shows rather low values of 

ATc , ATs  and ew. This is probably caused by underes- 

timating the hydraulic properties of the peat layers 

in the subsoil, as was already discussed in Chapter 6. 

Soil physical unit IV has also a relatively thick peat 

layer, resulting in a low value of ATs , but the effi-

ciency of water supply is comparable with that of the 

reference. For the low value of ATc no explanation 

can be found. 

The results of the sensitivity analysis show that 

the choice of the soil physical unit is important for 

the final result. Therefore it is not allowed to take 
one unit for the whole region and the distinction 

between deep peat soils, moderate deep peat soils, 

peaty soils, improved peaty soils and sandy soils has 

to be maintained. 

8.3. DRAINAGE RESISTANCE 

In the sensitivity analysis of FEMSATS (Table 6.1) 

it already turned out that the influence of the drain-

age resistance, T, on heights of the phreatic surface 

was considerable. The simulation results of SWAMP for 

different T-values are presented in Table 8.2. The 

conservation effect, ATc , is decreased when T is in-

creased to 300 days whereas decreasing T has little 

influence. 

The effect of water supply, ATs , clearly depends 

71 



Table 8.2. Influence of the drainage resistance on 
transpiration, To , on water conservation effect, AT c , 
on water supply effect, AT s , and on efficiency of wa-
ter supply, éw , simulated with SWAMP and averaged 
over the period 1971-1982 

Drainage resistance 

T = T = T = T = 
200 d 50 d 100 d 300 d 

(refer-
ence) 

To  (mm•a -1 ) 258.3 254.0 257.5 262.5 

AT 	(mm•a -1 ) 14.1 13.5 12.9 8.9 

AT: (mm•a -1 ) 9.4 15.7 8.1 

ew 	(%) 13.3 19.7 10.8 

on the drainage resistance because it increases with 

70% if T reduces from 200 days to 50 days. Such a 

low value of T might be achieved by pipe drainage at 

a mutual distance of about 15 m, used for drainage 

in winter and for sub-irrigation in dry summer peri-

ods. In Chapter 10 special attention will be paid to 

the consequences of using pipe drainage. 

8.4. MAINTENANCE OF TERTIARY SYSTEM 

Maintenance conditions of the tertiary system 

('wijken') influences its hydraulic properties. To 

reckon with these conditions in SWAMP, the following 

parameters may be changed: 

- the coefficient C
t in eqs. (5.16) and (5.17). For 

the reference the tertiary system is assumed to 

be in a good state of maintenance, having a value 
1 	- Ct = 0.10 d -m 1 

 ; 

- the bottom depth, 	 c 11,7) c . For the reference h *o 	is 

taken 1.60 m below soil surface. 

Field data showed that in a watercourse moder-

ately overgrown with weeds, C t  decreased by a factor 

5, while hó c  was only about 1.00 m. In watercourses 

heavily overgrown with water weeds C t  decreased with 

a factor 10 and h (*) c  was 0.90 m. 

In Table 8.3 the simulated results of these two 

situations are compared with those of the reference. 

For a moderately overgrown watercourse T o  is higher 

than in the reference situation. This is caused by 

a smaller depth of the bottom of the watercourse, 

h*o 	giving higher surface water levels. In this 

way  conservation already occurs in the zero situation 

and the effect of conservation by means of automatic 

weirs, i.e. ATc , even becomes negative. For the same 

reason the effect of water supply is strongly re-

duced. 

Table 8.3. Influence of maintenance of the tertiary 
system on yearly transpiration, To , on water conser-
vation effect, ATc , and on water supply effect, AT s , 
simulated with SWAMP and averaged over the period 
1971-1982 

Cleaned 	Moderately 	Heavily 

(reference) 
	overgrown 	overgrown 

To (mn-a -1 ) 

AT
c 

(rmn-a -1 ) 

ATs (nm-a -1 ) 

258.3 

14.1 

9.4 

275.0 

-2.0 

4.0 

245.6 

0.0 

0.0 

Heavily overgrown watercourses will lead to wa-

terlogging. Because the bottom of the watercourse, 

c' h*o 	is at 0.90 m below soil surface, no water can 

enter theses watercourses unless phases 6 or 7 are 

applied. Under wet circumstances such high surface 

water levels are never allowed, and will certainly 

damage the erop. This results in 'no effect' response 

of the model on conservation and water supply. 

The results clearly show that maintenance con-

ditions of the tertiary system are important to pre-

vent waterlogging. Poor maintenance will nullify the 

beneficial effects of conservation and water supply. 

8.5. DIMENSIONS OF WEIR 

In SWAMP the weir is modeled as a stage - dis-

charge relationship in the form (see eq. 5.12): 

vo  w  = cd 	- ho* ,w) n 	 (8.1) 

where cd is discharge coefficient and n is exponent. 

The numerical value of c d  has been derived from eq. 

(5.14): 

cd ' Cd ' x 
"i4 

x 8640 
	

(8.2) 

where aw  is specific width of weir expressed in 

ra•ha -1 . A value for aw  of 0.003 means that one meter 

of weir width is available for each 333 ha. In gen-

eral, this design criterium is used for hand-operated 

weirs; an automatic weir can be considerably narrower. 

To investigate the effects of dimensions of 

weirs, a_ has been changed in respectively 0.002 and 

0.001 in•ia 1 , corresponding with 1 m weir per 500 

and 1000 ha respectively. Table 8.4 gives the results. 

The outcome is that the dimension of the weir has 

very little influence. Hence, it may be concluded that 

the design criterium of 1 m weir per 333 ha for hand-

operated weirs can be reduced to 1 m weir per 1000 ha 

for automatic weirs. 
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Table 8.4. Influence of dimensions of weir on conser-
vation effect, ATc , on water supply effect, AT,, and 
on efficiency of water supply,eer , simulated with 
SWAMP and averaged over the period 1971-1982 

aw = 	aw = 	aw  = 

0.003 m•ha-1 

(reference) 

0.002 m•ha -1  0.001 m-ha 1 

ATc 
 (mm-a -1 ) 

14.1 15.8 14.0 

AT, 
(nm.a-1 ) 

ew (%) 

9.4 

13.3 

8.5 

11.6 

9.6 

13.2 

8.6. MAGNITUDE OF REGIONAL FLUX 

In Chapter 5 the influence of the regional seep-

age flux has been discussed. The regional flux 

(averaged over a section) was expressed as a v a  = 

f(hI,h)-relationship and is used as part of the low-

er boundary condition of the unsaturated system: vb  = 

vd + va . In Chapter 6 the possible maximum systematic 

error in va has been estimated at 0.24 mm-d 1 . About 

twice this value will be used to investigate the 

sensitivity of SWAMP for the magnitude of the regional 

(seepage) flux. 

For the reference situation va has been taken 

zero. This situation has been compared with situa-

tions where va = -0.5 and 0.5 mm•d - 1 . The results for 

ATc and ATs are given in Fig. 8.1. 

The conservation effect is the highest with va = 

0. The lower value of ATc with va = 0.5 mm•d
-1 can be 

explained by the fact that the seepage already causes 

an increase in transpiration without water management. 

The lower value of AT c with va = -0.5 mm- d
-1 is a re-

sult of the extra loss of water by downward seepage 

after the surface water level has been raised in 

20 - 	 20 - 

Fig. 8.1. Influence of magnitude of regional flux on 
water conservation effect, ATc , and on water supply 
effect, AT,, simulated with SWAMP and averaged over 
the period 1971-1982 

spring. 

The effect of water supply increases from upward 

seepage (0.5 mm-d-1 ) to downward seepage (-0.5 mm-d 1 ), 

because the drought effects increase. 

The results show that differences in magnitude 

of regional flux are important. A good knowledge of 

the regional pattern of seepage is necessary to es-

timate the effects of surface water management. 

8.7. WATERLOGGING DAMAGE 

One of the reasons to have low groundwater tables, 

especially in spring is to prevent damage due to wa-

terlogging. Wet soil conditions cause poor workability 

and favour unwanted soil compaction. In SWAMP these 

circumstances are taken into account by setting as a 

condition that for tillage in spring the soil water 

pressure in sandy and reclaimed cut-over peat soils 

at 5 cm below surface should be below -0.70 m to pre-

vent compaction (BOELS et al., 1980; BOELS and 

HAVINGA, 1980; BEUVING, 1982). On the average 10 'work-

able' days are required in the period between 20 March 

and 10 April for sowing sugar beets and planting po-

tatoes (BEUVING, 1982). For harvesting the same 

author gives a required soil water pressure head be-

low -0.60 m. For wheat no criteria are necessary be-

cause during harvest of this crop (July-August) wet 

soil conditions generally will not occur. 

In SWAMP a possible delay in sowing or planting 

time shifts the time scale in the standard growth 

curves (see Fig. 4.2) influencing crop cover and crop 

height and hence transpiration. 

For the purpose of modeling in spring a workable 

day is defined as a day at which the groundwater ta-

ble is below 0.70 m, a non-workable day as a day with 

a water table above 0.70 m. In autumn a workable day 

is defined as a day at which the groundwater table is 

below 1.00 m, a non-workable day as a day with a wa-

ter table above 0.60 m. Days at which the water table 

is between 0.60 and 1.00 m are partly workable; the 

non-workable part nw  is taken into account according 

to: 

nw  = 1 - (100 - 14)/40 	 (8.3) 

Sowing or planting is considered to be finished 

as soon as a total of 10 workable days have passed 

after 20 March. For harvest it is assumed that a farm-

er needs at least 30 workable days in the period 15 

September - 1 November. If the simulated number of 

workable days is less than 30, harvesting is assumed 

to start earlier and the consequences with respect to 
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transpiration are taken into account by ending the 

standard crop curves accordingly. 
A possible reduction in transpiration due to too 

wet soil conditions during the growing season is tak-

en into account by the parameters a 1  and a2  in the 

relation between relative soil water storage and 

transpiration (see Fig. 5.5): a 1  is the anaerobioses 

point and a2  is a particular water storage above which 

reduction in transpiration due to waterlogging occurs. 

In SWAMP the value for a 1 is taken 0.90 as an estima-

tion because little is known about its actual value. 

According to WIEBING (1983, pers. comm., Insti-

tute for Land and Water Management Research (ICW), 

Wageningen) potatoes need a minimum air content, 0 a  = 

0.12, in the root zone for an undisturbed root metab-

olism. Taking for the saturated water content O s  = 

0.60 (Table 4.2), a 2  then becomes 0.80. However, the 

figures in Table 4.2 stem from samples which have 

been taken before ploughing took place. Especially 

for potatoes farmers try to create a loose root zone 

and therefore a 2 = 0.85 is chosen as a good approxi-

mation. 

The sensitivity of the model results for the 

parameters a 1  and a 2  has been investigated by aang-

ing them from 0.90 and 0.85 to 0.85 and 0.80 respec-

tively. By this change the effect of conservation, 

ATc' decreased dramatically from 14.1 mm•a. 
1 for the 

reference unit to 0.2 mm•a -1  while ATs  only slightly 

decreased from 9.4 to 8.4 mm-a-1 Because of the high 

sensitivity of the model for these parameters extra 

attention is paid to them. 

SWATRE has more possibilities to investigate the 

sensitivity of the parameters for waterlogging damage, 

because of its different options for water uptake by 

roots and its more detailed modeling of the flow pro-

cesses in the unsaturated zone. In SWATRE two options 

for the modeling of water uptake by roots are possi-

ble (BELMANS et al., 1983): 

a)maximum possible root water uptake, Smax , is a 

function of Et,p defined as: 

S 	= E /z MaX 	t,p r 
	

( 8.4) 

where zr  is rooting depth 

and the actual uptake is a function of the soil wa-

ter pressure head, hp , according to: 

S(hp) = aS (hp) 	Smax 	 (8.5) 

where a
S 
 (hD  ) is a prescribed function detennined by 

the pressure head values p l  throu.gh p4  (Fig. 8.2); 

b)maximum possible root water uptake is independent  

1. 0 

2 
0.5 

0.0 
Pt. 	P3  

Pressure head, h p  

Fig. 8.2. Relation between dimensionless sink term 
variable, as , and soil water pressure head, hp  (after 
Belmans et al., 1983) 

of Et,p' but is defined by the root system 

(HOOGLAND et al., 1981), in the manner 

Sax = a + blzi m 
	 (8.6) 

where a and b are constants to be determined from 

measured root water uptake data. Because in the 

study no detailed information about root water up-

take was available, for a and b the values of 0.02 

and 0.0, as adviced by BELMANS et al. (1983), have 

been adopted. 

Method b) gives the best option for investigating 

the sensitivity of the model for changes in the water-

logging parameters p 1  and p2 , but it requires the 

thickness of the root zone in the course of time. Ac-

cording to WIEBING (1983, pers. comm.) the root de-

velopnent of potatoes is 0.66 cm-d-1 , starting at 

planting time and continuing until the roots reach 

their maximum depth about mid-July. The very wet grow-

ing season of 1980 has been taken, because in the pe-

riod 1971-1982 only this year did show a reduction in 

transpiration due to too wet conditions. 

In Table 8.5 the results of simulations with 

different values for p l  and p2  and different alterna-

tives of surf ace water management are given. In run 1 

the most likely values for p 1  and p2  have been used. 

In this wet year application of conservation leads to 

a considerable decrease in transpiration, i.e. 59.1 

mm. In run 2 the value of p 1  has beèn changed from 

-0.60 to -0.40 m. The effect of this change is that 

the profile may become wetter before root water up-

take ceases completely. The effect on AT c  indeed is 

considerable, i.e. from -59.4 to -34.1 mm. In run 3, 

p2  has been changed from -0.80 to -0.60 m compared 

with run 2. Now the reduction in transpiration due to 

water conservation is reduced from 34.1 to 25.8 mm. 

In run 4, p1  has been changed from -0.40 to -0.50 m, 

resulting in an increased damage by water conserva- 

tion. Now ATc goes from -25.8 to -42.9 mm. The results 

P2 
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(m) (m) 

-.60 -.80 
-.40 -.80 
-.40 -.60 
-.50 -.60 
-.40 -.80 

To  (mm) Tc  (mm) (mm) 

211.8 152.7 -59.1 
213.0 178.9 -34.1 
213.3 187.5 -25.8 
213.3 170.4 -42.9 
213.0 210.1 - 2.9 

1 
	

nonnal operation 
2 	normal operation 
3 
	

nonnal operation 
4 
	

floraal operation 
5 
	restrictive operation 

Table 8.5. Influence of changes in the parameters for root water suptake pl and p2 (see Fig. 8.2) on the transpi-
ration of potatoes in the zero situation, T0 , and with conservation, Tc , simulated with the SWATRE-model for the 
wet year 1980 (Et p  = 237.0 mm) 

Run nr. 	Description 	Pl 
	Pz 
	Transpiration 	Conservation effect, ATe  

of runs 1 to 4 prove that the sensitivity for param-

eters for waterlogging damage is very high. In run 5 

a more restrictive surface water management has been 

applied. Instead of using the relationship between 

groundwater depth and surface water level of the 

standard operational rules (Table 7.7) the changes to 

higher phases were only allowed at groundwater tables 

0.20 m lower than in the standard rules (compare run 

11 in Table 7.4). So the target level was only raised 

when h *  became more than 1.00 m below soil surface. 

The consequences of this restrictive surface wa-

ter management in this particular year are very sig-

nificant. The reduction in transpiration due to con-

servation sharply reduced from 34.1 for run 2 (with 

the same values for p l  and p2 ) to 2.9 mm. This result 

suggests that it may be better to apply restrictive 

management rules as long as there is no good determi-

nation of the parameters for waterloggging damage. 

Eb the other hand, it was only the year 1980 that 

showed a reduction in transpiration due to waterlog-

ging. The crop yields in 1980, which were about 10% 

lower than the average over 1971-1982, give the im-

pression that SWATRE overestimates this kind of dam-

age. This could be due to the fact that potatoes 

are grown in ridges, whereas SWATRE assumes a flat 

soil surface. 

According to the results of run 11 in Chapter 7, 

a more restrictive surface water management reduces 

the effect of conservation with 40% while the effect 

of water supply increases with 40%. Hence, if water 

supply is possible the decrease in ATc  can be compen-

sated by an increase of ATs . This fact may have as a 

practical consequence that surface water management 

can be more restrictive if the water supply possibil-

ities from outside the region are better. 

The uncertainties concerning the effects of wa-

terlogging have led to a dual approach in the estab-

lishment of the economical feasibility of surface wa-

ter management: 'normal' versus 'restrictive'.  

8.8. CONCLUSIONS 

The results of the sensitivity of SWAMP for soil 

physical unit, drainage resistance, maintenance of wa-

tercourses, dimension of weirs, magnitude of regional 

flux and parameters for waterlogging damage give a 

good review of the importance of the different param-

eters and relationships. They can be summarized as 

follows: 

- the influence of soil physical unit on the transpi-

ration is high. Differences in soil physical prop-

erties therefore have to be taken into account; 

- the effect of drainage resistance on water conser-

vation is moderate, but is compensated by a larger 

effect of water supply. Differences in drainage re-

sistance per section have to be taken into account; 

- the maintenance of the watercourses is of great 

influence on both the transpiration in the zero 

situation and on the effects of water conservation 

and water supply. This is mainly due to the fact 

that poor maintenance causes higher water levels 

than in the zero situation and does not allow ade-

quate water supply; 

- the sensitivity for dimension of weirs is very low 

and can be neglected; 

- the magnitude of the regional flux is of consider-

able importance, hence the regional pattern of seep-

age flux has to be known if one wants to calculate 

the effects of surface water management with a one-

dimensional model like SWAMP; 

- from the sensitivity analysis of the parameters for 

waterlogging damage during the growing season it may 

be concluded that waterlogging effects may be impor-

tant. Until more is known about these effects, for 

the time being a more restrictive surface water 

management has to be considered too, especially 

when water supply from outside the area is possible. 
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9. EFFECTS OF SURFACE WATER MANAGEMENT FOR THE 
ENTIRE AREA 'DE MONDEN' 

9.1. INTRODUCTION 

With the models FEMSATS and SWAMP and the opti-

mized operational rules the hydrological effects of 

different ways of surface water management are de-

termined for the entire research area 'De Monden'. 

These results are next used to arrive at the pro-

duction functions. 

For weather conditions data of the meteorologic-

al station Eelde during the period 1971-1982 were 

used and for crops a standard potato crop for starch 

production was chosen (Section 9.2). 

For each section given in Fig. 3.8 the regional 

groundwater flux v a  = f(11,h(*)) was calculated with 

FEMSATS and used as the seepage flux at the lower 

boundary of the unsaturated system in SWAMP (Section 

9.3). To each section representative hydrological 

and soil physical properties were assigned, after 

which the following water management strategies were 

simulated with SWAMP (see Appendix): 

I. weir with a fixed crest. The weir crest level is 

equal to the winter level of adjustable weirs 

(zero situation); 

II. conservation. The target level is determined from 

the operational rules derived in Chapter 7 (run 7 

and run 10, respectively, depending on soil 

physical unit); 

III.water supply with a maximum supply capacity, 

of 0.75 mm.d -1 ; 

TV. water supply with sm  = 1.50 mm.d -1 ; 
V. water supply with sm  = 2.50 mm•d-1 . 

The gross effect of conservation is the differ-

ence in transpiration between conservation and the ze-

ro situation; the effects of water supply are the dif-

ferences between the effects of the water management 

strategies III to V and conservation (Section 9.4). 

The gross effects have to be corrected for the 

limited number of meteorological years used in simu-

lations, the cropping pattern, the gross-net produc-

tion, the unevenness of the soil surface, the shape 

of the phreatic surface and the expected changes in 

soil physical properties in the near future. The 

different corrections will be dealt with in Section 

9.5. The net effects of the different water manage-

ment strategies per section are totalled to obtain 

the net effects for the entire research area. These  

final results will be treated in Section 9.6. 

9.2. METEOROLOGICAL AND CROP DATA 

Instead of using a limited number of typical hy-

drological years (e.g. wet, normal and dry), a histor-

ical record of meteorological data has been used here. 

Although this choice implies simulation over langer 

periods it was preferred for the following reasons: 

- surface water management has an influence on damages 

caused by waterlogging and by water shortage. The 

choice of typical years therefore should have been 

based on both degree of water shortage and degree 

of waterlogging. Especially the latter is very dif-

ficult because there are three periods (spring, 

growing season, autumn) with different sensitivity 

for waterlogging damage. Moreover the conditions in 

a year typical for a selected water shortage will 

most probably not allow to simulate waterlogging 

problems successfully; 

- the costs of running a simulation program like SWAMP 

on a computer are small and still will diminish in 

the near future. 

Using a time series of meteorological records the 

number of years has to be decided. Generally a time 

span of at least 30 years is considered necessary to 

obtain a reliable representation of the climatological 

conditions. Such a long record for the neighbourhood of 

the area was not available. Therefore a historical 

record of 12 years (1971-1982) of the narest meteo-

rological station at Eelde (approximately 40 km north-

west of the research area) has been chosen. Afterwards 

a correction for a longer time period has been applied, 

as will be explained in Section 9.5. 

As a representative crop, potatoes for starch 

production has been chosen. This crop covers about 

50% of the area. The remainder crops are sugar beets 

(30%) and cereals (20%). The effects of surface water 

management on the latter two crops will certainly not 

be the same as for a potato crop. Corrections needed 

in this respect will be discussed in Section 9.5. 
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9.3. SEEPAGE FLUXES PER SECTION 

With FEMSATS the relationships va  = f(h;,11;;) 

per section were derived for fluxes across the 

phreatic surface, vf , of 2.0, 1.0, 0.0, -1.0, -1.5, 

-2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0 and -5.5 

mm.d-1 , and surface water levels, h;'). , equal to winter 

level, winter level -0.10, winter level -0.20, winter 

level -0.30, winter level -0.40 and winter level 

-0.50 m (= summer level). The values of both v f and 

h*  were kept the same throughout the area in each 

run and every combination of the above mentioned 

values was simulated. 

The choice of the outer boundary conditions has 

been based on the fact that the research area is 1) 

part of the whole region of the waterboard 'De Veen-

marken', 2) part of the cut-over peat area and 3) 

the western border is formed by the Hondsrug. 

If surface water management will be applied in 

'De Monden', it will also be applied in the whole re-

gion of the waterboard 'De Veenmarken'. This means 

that the flows across the northern and the southern 

boundary of the research area will appr. remain the 

same. For the area east of 'De Monden' another water-

board intends to apply the same system of surface wa-

ter management, hence also the flow across the east-

ern boundary will not change. West of the research 

area surface water management is not possible because 

of the high elevation of that area. Assuming that 

the flow across the western boundary remains constant 

would ignore the influence of changes in groundwater 

height in the research area, caused by the surface 

water management. Assuming a constant hydraulic head 

along the western boundary would ignore the changes 

in hydraulic head outside the area, caused by fluc-

tuations inside. The best way to find proper boundary 

conditions would be to construct a groundwater flow 

model covering the research area and its surrounding. 

Lack of geohydrological data and especially lack of 

knowledge of the spatial pattern of drainage resis-

tance made this impossible. Analysis of the groundwa-

ter flow showed, however, that surface water manage-

ment induced only limited changes in hydraulic head 

west of the research area. Therefore it was assumed 

that a constant head along the western boundary of 

the research area is the most realistic choice. 

A total of 13 x 6 simulation runs with FEMSATS 

were performed. 

The bottom of the watercourses was set at 1.60 m 

below surface. In case h *  in a particular nodal point 

of the FEMSATS grid system became deeper than 1.60 m, 

it was set equal to 1.60 m below soil surface and the 

drainage resistance was raised to a value of 100 000 

days. In this way conditions with watercourses running 

dry could be handled with the same calculation proce-

dure. 

Surface runoff was accounted for by decreasing 

the drainage resistance, in case h; becomes less than 

0.20 m below soil surface, linearly from its original 

value at 0.20 m to 10 days for h; = 0.0 m below soil 

surface. By applying this rule some sections started 

sooner with surface runoff than others. As a conse-

quence h; was influenced which in turn caused a rapid 

change in the regional groundwater flow pattern. 

Some results of the computations are depicted 

in Figs. 9.1 through 9.7. Only the results for h:) 

 equal to winter level and h*0  equal to summer level 

are given. In most of the figures the relation between 

va and h*  is approximately linear. Deviations at low 

hf-values reflect the influence of surface runoff in 

some sections, but these deviations play a minor role 

in the va-relationships. Most sections show positive 

values for va , indicating groundwater influx from else-

where. Negative values, indicating outflow to other 

sections are limited to a few cases and their magni-

tudes rarely exceed 0.5 mm.d 1 . 
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Fig. 9.4. The relationship va  = f(h.;,h) of sections 
0-32 and 0,46, calculated with FEMSATS, type D 

Square symbols indicate results for the case 

capillary rise is a function of h'f. In general, these 

points differ only slightly from the general va 

 f(h,b.:3')-relationships as simulated with a constant 

Fig. 9.5. The relationship v = f(h;,g) of section 
0-40, calculated with FEMSATS, type E 

value of vf throughout the area. This result supports 

the concliision in Chapter 6 that it is acceptable to 

impose one value for vf  as upper boundary condition 

for FEMSATS. 
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* 
In the simulated relationships v a = f(hf  ,h0) 

per section, a distinction has been made between the 

following types (Figs. 9.1 through 9.7): 

type A: va  > 0, dva/dhf*  > 0 and dva/dh *)  = 0. So  

Fig. 9.6. The relationship va  = 
f(fiT,h;:;) of sections W-26, 0-36, 
0-38, 0-42 and 0-44, calculated with 
FEMSATS, type F 

the seepage flux increases with increasing h *f ; 

t ype B: va  , 0, dva/dhf*  - 0 and dv a/dh(*)  , 0. 

Seepage flux is independent of h f ; 

t ype C: va  > 0, dva/dh; < 0 and dva/dhj; 0. 

Seepage decreases with increasing h; except for shal-

low water tables; 

t ype D: va  > 0, dva/dhf*  < 0 and dva/dh*0  > 0. 

Similar to type C but seepage depends on h; 

t ype E: va  < 0, dva/dhf*  < 0 and dva/dg > 0. 

Water loss to deep subsoil occurs, and there is an 

influence of h*- ' o' 
t ype F: va  > 0 and va  < 0, dva/dhf  > 0 and 

dva  /dh *  < 0. Upward seepage turns into losses for 

smaller values of h;; 

t ype G: va  < 0, dva/dh; 0 and dva/dh'jr  < 0. Wa-

ter losses to deep subsoil without influence of 

As can be seen from Figs. 9.1 through 9.7, the 

seepage flux averaged over a section reacts on changes 

in h*  and sometimes on h * . The different va = f(17f'  h* )- 

relationships per section are used as part of the 

lower boundary condition for the unsaturated zone. 

0-4Z, 
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9.4. CROSS HYDROLOGICAL EFFECTS OF CONSERVATION AND 

WATER SUPPLY 

To arrive at the gross hydrological effects for 

each section a representative soil physical unit, a 

representative T-value and a va  = f(171-7,11)-relation-

ship as described in the previous section were deter-

mined 

SWAMP is a one-dimensional model which siMulates 

the hydrological processes in one point per section, 

the 'reference simulation point'. Per reference simu-

lation point the surface water management strategies 

I through V, mentioned in the introduction of this 

chapter have been simulated for the period 1971-1982. 

The results of the simulations in terms of average 

transpiration and amounts of supplied water are given  

in Table 9.1. The figures for the subregions and the 

whole region are the weighted averages of the sec-

tions. 

The effects of conservation and water supply and 

efficiencies of water supply have been defined as 

follows: 

- average yearly effect of conservati,il: 

ATc  = Et  (II) - Et  (I)Tim.a 1 ) 

- average yearly effect of water supply: 

AT
0.75 = Et (III) - Et (II) 	(

mm .a 1 ) 

where the subscript 0.75 stands for sm  = 0.75 

mm.d-1 . Definitions of AT1.50  and AT2 50  are simi- 

lar 

Table 9.1. Average yearly transpiration, Et, and amounts of water supply per unit area, vo  , per section, per 
subregion and of the whole region 'De Monden' for five alternatives of surface water manag ent during the 
period 1971-1982, simulated with SWAMP 

(fixed weir) 

Section, Cross 	Soil 
(sub)- area physical 
region 	 unit II 

(conser-
vation) 

III 

(water supply 
sm  = 0.75 mm•d-1 ) 

IV 	 V 

(water supply 	(water supply 
sm  = 1.50 mm•d-1 ) sm  = 2.50 mm•d-1 ) 

Surface water management alternatives 

(ha) 

Et  

(d) 	(mm.a-1 ) 

Et vo .P 
(nn•a-1 ) (mn•a-1 ) 

Et 	vo ,P 	
Et 	vo ,p 

(nm.a 1 ) (mn.a-1 ) 	(nm.a-1 ) (mm•a 1 ) 

1 2 3 4 5 6 7 8 9 10 11 12 

W-1 320 200 251.0 257.9 260.1 32.3 261.5 46.8 261.5 46.8 
W-16 330 200 226.4 256.8 256.9 19.9 256.3 32.0 256.3 32.0 
W-18 239 1V 300 252.6 258.0 260.4 31.2 261.7 46.1 262.5 47.2 
W-22 183 )(I 200 246.1 254.1 265.0 62.9 272.4 103.6 276.4 119.9 
W-22 330 IV 300 252.6 258.0 260.4 31.2 261.6 46.7 262.5 47.0 
W-26 474 VII 350 246.2 250.7 253.0 30.0 254.9 45.4 255.3 48.2 

Western 
sub-
region 1876 250.9 255.5 258.9 32.2 260.0 49.3 260.7 51.8 

M-22 584 XI 150 257.6 272.7 279.9 46.3 284.3 73.3 285.2 88.9 
M-24 329 XI 300 260.1 272.0 277.2 46.2 279.7 67.3 281.5 77.0 
M-26 828 VII 115 231.4 255.1 259.1 37.6 259.9 57.7 261.5 67.9 
M-34 666 XI 150 259.3 276.2 281.5 42.0 284.4 63.3 286.1 71.7 
M-36 430 XI 275 256.7 271.1 277.4 49.4 279.7 72.8 281.8 85.3 

Middle 
sub-
region 2837 250.5 268.1 273.5 43.2 276.0 65.6 277.5 76.8 

0-32 166 XI 120 271.6 284.1 287.5 30.1 288.4 44.1 289.6 47.2 
0-34 402 VII 140 235.3 250.7 256.7 35.4 259.4 53.4 261.4 83.9 
0-36 348 VIII 175 215.0 225.9 237.0 40.4 244.1 59.1 246.1 65.9 
0-38 366 XI 240 256.6 270.5 278.1 50.1 281.5 75.3 283.3 89.1 
0-40 100 VII 270 229.9 246.7 251.8 39.4 254.3 58.8 255.8 62.2 
0-42 248 XI 350 267.5 272.5 276.8 39 . 7  278.3 54.6 280.1 56.2 
0-44 248 XI 540 265.4 270.0 272.8 40.8 274.6 56.5 275.1 56.2 
0-46 250 VIII 150 220.1 229.2 239.4 39.8 244.7 55.5 246.7 65.6 

Eastern 
sub-
region 2128 243.7 254.7 261.5 40.2 265.0 58.4 266.7 69.4 

Whole 
region 6814 248.5 260.5 265.8 39.2 268.2 58.9 269.5 67.6 
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(Sub)region 
	

ATc  

(lmi-a -1 ) 

West 
	

4.6 
Maddle 
	

17.6 
East 
	

11.0 

'De Monden' 
	

12.0 

Table 9.3. Simulated effects of wa-
ter conservation and water supply 
on actual transpiration, Et, ex - 
pressed as percentage of potential 
transpiration, Et 'p, per subregion 
and for the whole region 'De Mon-
den', averaged over the period 
1971-1982 

Table 9.2. Average yearly gross effects per unit area of water conservation, AT c , water supply, AT5 , and effi-
ciencies of water supply, e7,  per subregion and for the whole region 'De Monden' 

AT 0.7§ 	e0.75 
(mn.a- ') 	 (%) 

AT1.50 

 (nn-a-1 ) 
e1 .50 

(%) 
AT2.50 
(an.a -1 ) 

e2.50 

(%) 

	

3.4 	10.5 

	

5.4 	12.5 

	

6.8 	16.9 

	

5.3 	13.5 

4.5 
7.9 

10.3 

7.7 

9.1 
12.0 
17.5 

13.1 

5.2 
9.4 
12.0 

9.0 

10.0 
12.2 
17.7 

13.3 

(Sub)region AT0.75 /Et,p  ATc/Et,p 

(%) 	 (%) 

AT1.50 /Et,p 

(%) 

AT2.50/Et,p 

(%) 

West 
Maddle 
East 

'De Monden' 

1.56 
5.96 
3.72 

4.04 

1.15 
1.83 
2.30 

1.79 

1.52 
2.67 
3.49 

2.60 

1.76 
3.18 
4.06 

3.05 

- average yearly efficiency of water supply: 

e0.75  = (AT0.75 /v0.75 ) x 100% 

where v0.75 is average yearly amount of supplied 

water with sin  = 0.75 mm•e1-1 . For sm = 1.5 and 2.5 

definitions are similar. 

These results per subregion and for the whole 

area are given in Table 9.2. 

Finally in Table 9.3 the different effects are 

given as percentage of the average yearly potential 

transpiration, E, p  (i.e. 295.4 mm.a-1 ). 

All tables show that the effects of water con-

servation and supply in the western subregion are 

lower than elsewhere. Probably this is caused by a 

seepage flow into this region from the Hondsrug 

ridge. Another reason may be the estimation of soil 

physical properties. The most occurring soil physi-

cal unit in this subregion is unit I. From the analy-

sis of remote sensing images (Chapter 6) it already 

has been concluded that the capillary conductivity of 

this unit has nrobably been underestimated. 

The effects of water supply do not increase pro-

nortionally with supply capacity. This is mainly be-

cause in wetter years the higher capacities are not 

utilized. 

9.5. CORRECTIONS ON 7IE CROSS HYDROLOGICAL EFFECTS 

The effects of water conservation and water sup-

ply given in Table 9.2 would be true if the whole area 

of 6814 ha was covered completely with a good growing 

potato crop, the meteorological data would be represen- 

tative for the local climate, the soil surface was 

completely horizontal and flat and no roads, etc. 

would be present. Because this is not the case, a 

number of corrections has to be applied. Resides, a 

correction has to be applied for expected future 

Changes in soil-physical properties. 

Correction for meteorological data 

First of all the question whether the meteorolog-

ical data of the period 1971-1982 are representative 

for a longer period has to be answered. A good mea-

sure for the degree of dryness of a particular year 

proved to be the maximum value of the water deficit 

in the root zone, Wr d , calculated by assuming a 

potential transpiration rate. WIEBING (1982, pers. 

comm.) calculated these yearly maximum values during 

the period 1945-1982 for a potato crop, using meteo-

rological data of Eelde. The average value of Wr d 

 over the period 1945-1982 was 150 mm; that over the 

period 1971-1982 167 mm. The latter period, therefore, 

was approximately 10% drier. Therefore it was decided 

to reduce the gross effects, obtained over the period 

1971-1982, by 10%. 

Correction for crop related data 

The standard potato crop used in the model can 

be classified as a middle-late ripening one. In prac-

tice there are early, middle-late and late-ripening 

varieties grown, but the standard crop is assumed to 

be representative for all varieties. 

The sugar beets (30%) and cereals (20%) in the 

area are actually accounted for in the following way. 

With the SWADRE-model the effects of conservation and 

water supply on transniration of sugar beets and win- 
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Table 9.4. Comparison between simulated yearly ef-
fects of water conservation and water supply, AT, and 
AT, on the transpiration of potatoes and the corre-
sponding effects for a cropping pattern with 50% 
potatoes, 30% sugar beets and 20% winter wheat 

Year 
	

AT, (mm.a-1 ) 	 AT, (nm.a-1 ) 

	

potatoes cropping 	potatoes cropping 

	

pattern 	 pattern 

1971 
	

19.0 
	

18.1 
1975 
	

17.3 
	

19.9 
Average 
	

18.2 
	

18.5 

ter wheat for the years 1971 and 1975 were simulated. 

These years have been selected because they did show 

considerable but not extremely high effects of con-

servation and water supply on the transpiration of 

the potato crop. With the results the weighted ef-

fects of water conservation and supply in 1971 and 

1975 for the actual cropping pattern in 'De Monden' 

have been derived. Table 9.4 gives the results com-

pared with the simulated effects of the potato crop. 

Because differences are small it has been concluded 

that the standard potato crop can be considered rep-

resentative for the cropping pattern as a whole. 

The standard potato erop is assumed to be free of 

diseases and to grow equally well at each location in 

the field. In practice, however, both diseases and 

less favourable growing conditions on headlands and 

along the edges of parcels result in a lower transpi-

ration per unit area than calculated for the reference 

simulation point. These conditions will be accounted 

for when converting additional transpiration into 

crop production. 

Correction for gross - net area 

From data of SLOTHOUWER (1982) it can be derived 

that of the gross area 76% is used by agriculture, 

the remainder being occupied by roads, farmyards, wa-

ter, buildings, etc. The area occupied by the surface 

water system is about 6% of the gross area and is ac-

counted for in the model. This means that 18% of the 

gross area is not modeled. It has been assumed that 

about half of this area receives water, but gives no 

effects of surface water management. This results in 

a decrease of the water supply efficiency of 10% 

(e.g. ew  = 10% becomes ew  = 9%). To find the hydro-

logical effects per unit surface therefore only 82% 

of the gross area, given in Table 9.1, has to be tak-

en. 

Correction for unevenness of the soil surface 

As can be seen from the elevation map (Fig. 3.5) 

the elevation of the soil surface within each section  

is varying. The contour lines reflect only the 

regional and local trends in elevation and do not 

show smaller differences in micro-relief. Spots with 

a lower or higher elevation than the reference sim-

ulation point will respond in a different way. 

To investigate the consequences of the unevenness 

the hydrological processes during 1971-1982 have been 

simulated with different elevations of the soil sur-

face, different water management strategies and dif-

ferent soil physical units. The results of the simu-

lations are given in Fig. 9.8 in terras of E t  and soil 

surface elevation. The curves in this figUre show 

that the relation between soil surface elevation and 

280 
Weir with fixed weir trest 

• ok, 

200 

Fig. 9.8. Average yearly transpiration of potatoes 
growing on soil physical units IV, VIII and XI, Et, 
as function of height of the soil surface, calculat-
ed with SWAMP for three alternative ways of surface 
water management 
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Fig.  9.9. Average yearly transpiration of potatoes, 
Et, of section 0-38 derived from the relations in Fig. 
9.8, for three alternative ways of surface water 
management 

the average yearly transpiration has an optimum, that 

varies with soil physical unit and water management 

employed. Furthennore Et  decreases sharply for soil 

surface elevations less than 1.00 m above winter lev-

el, as a result of increasing waterlogging damage. 

Next five sections were selected. Per section 

soil physical units and elevation at a great number 

of locations were determined, using the soil map 

1:50 000 and a map with point elevation values. With 

the aid of this data each section was subdivided in-

to a number of combinations of surface elevation and 

soil physical unit, applying elevation classes of 5 

ma and the soil physical units given in Fig. 9.8. For 

each combination the -É-t'-values for a given winter wa-

ter level and for the three surface water management 

alternatives were read from the curves in Fig. 9.8. 

Averaging all Et-values per section yielded the aver-

age yearly value of E t  for an entire section. Repeat-

ing these calculations with different winter levels 

yielded a relationship between winter level and E t  for 

each of the 5 selected sections. In Fig. 9.9 an exam- 

ple is shown. The optimal depths of winter level and 

the corresponding Et  are given in Table 9.5. The 

optimal depth of a fixed weir crest is approximately 

1.40 m below average soil surface. With conservation 

the optimal winter level is approximately 1.50 m, 

while with water supply this depth is approximately 

1.55 m. From Table 9.5 also the effects of conserva-

tion and water supply per section follow. In Table 

9.6 these effects are compared with the effects com-

puted for a flat surface and with elevation equal to 

that in the reference simulation point. Averaged over 

five sections the effects are reduced by unevenness 

to 74% and 64% of the values for flat land for con-

servation and water supply, respectively. 

By oxydation of organic matter the unevenness 

may increase, because the soil profiles in the low-

est places normally have a higher organic matter con-

tent and a thicker peat layer in the subsoil. Assum-

ing lowering of the soil surface between zero and 

0.15 m, depending on soil type, the above mentioned 

reductions did not change more than 3%. Therefore the 

influence of future changes in soil surface elevation 

has been ignored. 

Table 9.6. Comparison between the average yearly ef-
fects of water conservation, AT c , and water supply,  
ATs , corresponding to an uneven soil surface and AT c 

 and ATs  corresponding to a flat soil surface, in 
five selected sections of 'De Monden' 

Section 	ATc  (mn-a-1 ) 	ATs  (mn.a-1 ) 

uneven 
soil 
surface 

flat soil 
surface 

uneven 
soil 

surface 

flat soil 
surface 

W-24 6.0 7.6 5.0 8.4 
W-26 5.0 6.4 6.0 8.1 
0-34 5.0 7.9 6.0 8.8 
0-38 6.0 6.8 5.0 8.4 
0-42 6.0 9.3 6.0 10.4 

Average 5.6 7.6 5.6 8.8 

Table 9.5. Optimal depth of weir crest or winter level relative to the mean height of the soil surface of a 
section and corresponding transpiration for the period 1971-1982 and averaged over a section, Et, of three al-
ternatives of surface water management, in five selected sections of 'De Monden' 

Section I (fixed weir) 	 II (conservation) 

 

III (supply, set  = 1.50 min.d -1 ) 

      

weir crest 
	

Et 	winter level 
	

It 
	 winter level 
	

Et  

(n below 
	

(nm.a.-1 ) 
	

(n below 
	(nun , a-1) 	 (n below 
	

(nun•a-1 ) 
soil surface) 
	

soil surface) 
	

soil surface) 

W-24 1.50 237 1.60 243 1.65 248 
W-26 1.40 239 1.52 244 1.55 250 
0-34 1.40 238 1.50 243 1.55 249 
0-38 1.35 239 1.50 245 1.52 250 
0-42 1.45 225 1.50 231 1.55 237 

Average 1.40 235.6 1.52 241.2 1.56 246.8 
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Fig. 9.10. Schematic representation 
of influence of location of refer-
ence simulation point on flow resis - 
tance to the watercourse 

 

Reference point 

1 Drainage 
2 Sub-irrigation 

Variation in height of phreatic surface 

From the simulation results the influence of un-

evenness of the soil surface on the average yearly 

amount of water supply v 0,P ; and on the average year- 

ly efficiency of water supply, ew, could not be de-

rived. Assuming that e w  remains the same for all 

elevations, v 	would decrease with 36%. In relative- o,p 
ly low places, 'è-171  can become negative. In relatively 

high places ew  may be decreased because the distance 

between groundwater table and root zone becomes too 

great to give a sufficient capillary rise. Groundwa-

ter will flow from these places to places with cap-

illary rise and the supply will be less than calculat-

ed. This kind of local groundwater flow cannot be ac-

counted for in SWAMP. As a guess it therefore has 

been assumed that on 80% of the area e w  remains the 

same as in the reference simulation point and on 20% 

it becomes zero, so that ew  reduces with 20%. Combined 

with a 36% lower effect of water supply, v o p  of a 

section becomes 20% lower than has been calculated for 

the reference simulation point. 

Correction for the shape of the phreatic surface 

The location of the reference simulation point 

is that particular place where hf  = hf  (see also Fig. 

5.4). In order to investigate whether it is necessary 

to correct for the shape of the phreatic surface the 

parcel AB in Fig. 9.10 has been divided into 4 strips, 

each with a width of 20 m. The centre of each strip 

is taken as representative. 

For each strip ATc  and AT1 5  have been simulated. 

The results show that AT c  and AT15  of the reference 

simulation point are 10% and 3% larger than AT c  and 

AT15 averaged over the entire parcel (strips 1 

through 4). 

Correction for future changes in soil physical prop-

erties 

The soil mapping units of soil map 1:50 000 are 

the 'carriers' of the soil physical properties. How - 

ever, the soil physical properties change with time 

for three reasons: 

a) The decomposition of organic matter is faster than 

the supply. With certain assumptions about the 

decomposition rate it can be calculated that with-

in 30 years, roughly the following changes will 

occur: 

- deep peat soils (zVc, aVc, iVc, aVz) lose part 

of the organic matter but remain peat soils; 

- moderate deep peat soils (iVz, iVp) change into 

peaty soils; 

- peaty soils (iWz, iWp, zWz) change into sandy 

soils; 

- in sandy soils (1n21, pZn21) the water retention 

capacity of the root zone will diminish. 

b) The soil physical properties drastically change by 

soil improvement (see Chapter 4). 

c)As a result of deeper cultivation and subsoil 

lining the thickness of the root zone can increase, 

especially in soil types with a root zone of only 

0.20 m. 

The changes described above will affect the val-

ues of AT c  , ATs  and ew . Because the benefits of in- 

vestments stretch over a period of 30 to 50 years, it 

is necessary to estimate the potential influences 

of such changes. 

The effects of a transformation of a moderate 

deep peat soil into a peaty soil have been estimated 

by comparing the soil physical units IV (iVz, iVp) and 

V (iWz). The simulated values of AT c  are 5.1 and 17.6 
1 mm-a-1 respectively; of ATs  8.3 and 9.6 mm•a. res- 

pectively. It has been estimated that this change 

will happen in 10% of the area. 

The effects of a transformation of a peaty soil 

into a sandy soil have been estimated by comparing 

soil physical unit V (iWz) and VIII (Hn21, pZr21). 
1 The simulated values of 	are 17.6 and 8.5 mm•a 

respectively; of AT15  9.6 and 15.8 mm•a. -1 . This 

change will manifest itself in about 15% of the area. 

Already a considerable part of the area has been 

improved, but roughly 20% of the area still is poten-

tially improvable. The effects have been estimated 
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Soil 
physical 
unit 

Effect of 
water supply, ATs  

(um -1)mn -1 ) 

Effect of 
conservation, ATc  

Table 9.7. Change in average yearly effects of water 
conservation and water supply owing to a decrease in 
soil water retention capacity, caused by soil degra-
dation 

reference degradated reference degradated 
profile 	profile 	profile 	profile 

XI 14.1 12.8 9.4 7.8 
VIII 8.5 16.9 15.8 14.2 

by comparing soil physical unit VII (iWp) and XI (im-

proved iWp) giving a ATc  of 17.6 and 14.1 mm.a 1 

 respectively; AT15  is 9.6 and 9.4 mm-a 1  respective-

ly. 

To estimate the effects of a decrease in water 

retention capacity caused by decomposition of organic 

matter the following changes have been assumed. The 

soil water retention capacity corresponding with a 

groundwater depth of 1.00 m of root zone and subsoil 

of soil physical unit XI (improved peaty soil) de-

creases from 181 to 170 and from 645 to 632 mm respec-

tively. The soil water retention capacity of the root 

zone of soil physical unit VIII (podsol) decreases 

from 82 to 62 mm. The effects of these changes have 

been simulated with SWAMP for the period 1971-1982 and 

the average values are given in Table 9.7. It has been 

estimated that the degradation of improved peaty soils 

is relevant for 40% of the area, the degradation of 

sandy soils for 10% of the area. 

The total effect of all possible changes in soil 

physical properties has been determined by taking into 

account the areas for which the particular change is 

relevant. This procedure has resulted in a decrease of 

the effect of water conservation of 15%, while the ef-

fect of water supply increases with 10%. Changes in wa-

ter supply efficiency have not been investigated but it 

Table 9.8. Summary of possible systematic corrections 
ion the average yearly hydrological effects of water 
conservation, ATV , and water supply, AT,, and on aver-
age yearly efficiency of water supply, e w , calculated 
with SWAMP 

Correction 
for ATc  

(%) 

Correction 
for ATs  

(%) 

Correction 
for eT,7 

(%) 

Meteorological 
data -10 -10 0 
Crop related data 
(Table 9.3) 0 0 
Gross-net area -10 
Unevenness of 
soil surface 
(Table 9.4) -26 -36 -20 
Shape of phreatic 
surface -10 - 3 0 
Changes in soil 
physical proper-
ties -15 +1 0 0 

Overall corrections -50 -30 -30 

has been estimated that ew practically will not change. 

9.6. NET HYDROLOGICAL EFFECTS OF WATER CONSERVATION 

AND WATER SUPPLY 

The corrections discussed in the previous section 

are summarized in Table 9.8. The last row gives the 

overall corrections, as obtained by the product rule 

for percentages. These overall corrections, if applied 

to the values obtained earlier, result in the data 

shown in Table 9.9. 

In Chapter 7 a more 'restrictive' surface water 

management has been mentioned (run 11 in Table 7.4). 

For the reference (for the definition, see Section 

7.2) ATc  was about 40% lower, while ATs  and vo p  in-

creased with some 40% and 20% respectively. Applying 

these percentages gives the estimation of the net ef-

fects of a restrictive surface water management given 

in the last row of Table 9.9. It must be emphasized 

Table 9.9. Average yearly net hydrological effects, per unit area and as percentage of potential transpiration, 
of water conservation/water supply together with average yearly amounts of water supply per unit area in three 
subregions and in the whole region 'De Monden' obtained from correction of the gross hydrological effects, given 
in Tables 9.2 and 9.3 

(Sub)region Conservation Supply, sm  = 0.75 mm•d-1  Supply, s, = 1.50 mm•d-1  SupplY, sm = 2.50 mm•d-1  

ATc 
(mm.a 1 ) 

ATc 
(%) 

AT 0.75 
(mm•a-1 ) 

AT0.75 
(%) 

vo,p 
(mm.a 1 ) 

AT1.50 
(mm.a. 1 ) 

AT1.50 
(%) 

vo,p 
(mm•a-1 ) 

AT2.50 
(mn•a. -1 ) 

AT2.50 
(%) 

vo,p, 
(nn.a') 

West 2.5 0.79 2.4 0.81 32.6 3.2 1.06 50.2 3.6 1.23 51.4 
Middle 8.8 2.98 3.8 1.28 43.4 5.5 1.87 65.5 6.6 2.23 77.3 
East 5.5 1.86 4.8 1.61 40.6 7.2 2.44 58.8 8.9 2.84 71.8 

'De Monden' 6.0 2.02 3.7 1.25 39.5 5.4 1.82 59.4 6.3 2.14 67.2 

'Restrictive' 
management 3.6 1.21 5.2 1.75 47.4 7.6 2.55 71.3 8.8 3.00 80.6 
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that these figures are not the result of simulations, 

but merely the outcome of applying the above mentioned 

percentages. This table has been used as a basis for 

the determination of the economical effects of water 

conservation and water supply (see Chapter 11). The 

main aim of using the figures for restrictive manage-

ment is to show the sensitivity of the operational 

roles applied on these effects. 

The figures in Table 9.9 could suggest that the 

hydrological effects have been determined with a high 

degree of accuracy. The sensitivity analysis, how-

ever, shows that the effects in reality may differ 

considerably from the simulated ones. Besides a num-

ber of secondary effects of surface water management 

have not taken into account (see Chapter 10). The 

figures in Table 9.9 therefore must be considered as 

a best estimate, free of systematic errors. Because 

it is difficult to base engineering decisions such as 

the construction of weirs, etc. on a distribution 

function of possible effects of water conservation 

and supply, the approach of the best estimates fol - 

lowed here remains necessary. The presence of a cer-

tain scatter in possible effects must certainly be 

kept in mind. 
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10. OTHER ASPECTS OF SURFACE WATER MANAGEMENT 

10.1. INTRODUCTION 

In Chapter 9 the net hydrological effects of 

surface water management have been treated. In this 

chapter some other aspects will be discussed. 

Water conservation and water supply not only 

involves the construction of weirs and inlet struc-

tures, but also the choice of an operating system. 

The proposed operational rules are partly based upon 

groundwater observations. In Sections 10.2 and 10.3 

the required number and the location of piezometers 

will be discussed. 

In the previous chapter it has been assumed that 

all watercourses of the tertiary system were well-

maintained. This, however, is not the case, and in 

Section 10.4 the influence of this maintenance will 

be examined. 

Pipe drainage is uncommon in the area, but its 

installation in future may influence the effects of 

surface water management. This question will be dealt 

with in Section 10.5. 

In Chapter 9 it was found that the unevenness of 

the soil surface has a considerable influence. The 

size of a section may influence this conclusion; this 

will be verified in Section 10.6. 

Construction of weirs and inlet structures will 

influence the flow of water in the watercourses. In 

Section 10.7 the hydraulic aspects will be treated. 

Finally, in Section 10.8, a number of secondary 

effects of surface water management will be treated. 

10.2. LOCATION OF REFERENCE PIEZOMETER 

In SKAMP the surface water management is govern-

ed by the depth of the groundwater and the water stor-

age in the root zone at one reference simulation 

point. Due to unevenness of the soil surface the win-

ter level below the average soil surface of a whole 

section may differ from the depth of the winter level 

in the reference simulation point (Table 9.5). In 

case of conservation, the optimal depth of the winter 

level should be 1.52 m below the mean level of the 

soil surface of a section, whereas the winter level 

was only 1.40 m below the soil surface in the refer-

ence point. With water supply these values were 1.56 

m and 1.40 m respectively. In these cases the level 

of the reference simulation point did not coincide 

with the mean level of the soil surface of a section, 

but was situated 0.12 m (conservation) and 0.16 m 

(water supply) lower. A waterboard, that wants to 

operate with surface water levels according to the 

operational rules discussed in Charter 7, must situ-

ate its reference piezometer about 0.15 m lower than 

the average height of the soil surface of a section. 

Another problem with the location of a reference 

piezometer is its position with respect to the water-

courses. In an area like 'De Monden', with an average 

distante between two watercourses of 200 m and a 

shape factor n f  = 0.80, a point about 30 m away from 

a watercourse coincides with the point where h f  = hf 

 (see also Fig. 9.10). In general, this position will 

be in a field, which may cause inconvenience. If a 

location midway between two watercourses is chosen, a 

larger variation in depth of groundwater table occurs, 

and a correction should be applied. 

10.3. NUMBER OF REFERENCE PIEZOMETERS 

Applying SWAMP for surface water management re-

quires a reference point in each section. An important 

question for the waterboard is whether one reference 

point can be used for several sections to reduce the 

number of observations. From the figures in Table 

5.2 it can be concluded that there exists a close 

correlation between the different piezometers. There-

fore, it should not be necessary to have a reference 

piezometer for each section. 

To test whether it is allowed to use a limited 

number of reference piezometers the following model 

experiment has been perfonned. Two hydrologically 

different sections with the same groundwater depth 

classification has been chosen, viz. M-36 (T = 275 

days and va  < 0.0 mm.d 1 ) and M-22 (T = 100 days and 

va > 0.0 mm.d
1 ). Data of the reference simulation 

point of section M-36 have been used as input for 

section M-22. The hydrological effects of water sup-

ply for M-22, calculated in this way, were compared 

with those obtained by using data from M-22 itself. 

The result was that AT s changed from 11.6 to 10.9 

mm.a. -1 , while v
0,P 

 increased from 73.3 to 75.8 mm•a -1 . 

Hence, it has been concluded that it is allowed to 

reduce the number of reference piezometers. A possi- 
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ble recommendation is to chose one reference piezo-

meter per groundwater depth class. 

10.4. INFLUENCE OF MAINTENANCE OF SMALL CANALS 

In earlier simulations, good maintenance of the 

watercourses has been assumed. From the sensitivity 

analysis maintenance conditions of the 'wijken' turn-

ed out to have a large influence, not only on the 

effects of water conservation and water supply, but 

also on the actual transpiration in the zero situa-

tion (Table 8.3). 

To get a better insight in the effects of clean-

ing all 'wijken', the transpiration of potatoes per 

section during the period 1971-1982 has been simulat-

ed with SWAMP for water supply with sm  = 1.50 mm.(1 1 

 and watercourses partly overgrown by water weeds. The 

Jatter condition is representative for the present 

situation. Compared with the same situation, but 

'wijken' all cleaned, T1.50  for the western, middle 

and eastern subregion decreased with 58.5, 10.4 and 

24.3 mm•a. -1 respectively, corresponding with 23, 5 

and 9% of Et p . For the whole region T 1.50  decreased 

from 268.1 to 240.3 mm•a-1 (10%), while vo p  only de- , 
creased from 58.9 to 57.3 mm•a. -1 . The negative ef-

fects of non-optimal maintenance of the 'wijken' 

therefore are considerable, especially in the western 

region where, in general, upward seepage occurs (v a  > 

0). It may be expected that in future the small canals 

will be cleaned and maintained, so that the earlier 

simulations will become representative. 

10.5. CONSEQUENCES OF INSTALLATION OF PIPE DRAINAGE 

One of the results of the sensitivity analysis 

was that the effect of water supply, AT s , depends on 

the value of the drainage resistance T. In practice 

T can be decreased by installing pipe drainage. This 

is only done when considerable waterlogging damage 

occurs. According to the curves depicting the rela-

tion between winter level and E t  (Fig. 9.8), water-

logging damage becomes important if the soil surface 

is less than 1.20 m above the weir trest or winter 

level. Therefore it has been assumed that pipe drain-

age only is relevant for places with an elevation 

less than 1.20 m below winter level and that it will 

be used for both drainage and sub-irrigation. 

The consequences of the installation of pipe 

drainage at these places have been computed by apply-

ing the following steps: 

- three reference simulation points have been defined 

viz. soil physical units IV, VIII and XI, all three 

having T = 200 days; 

- points which have an elevation of 0.20 m or more 

below the elevation of the reference point have 

been assumed to get a pipe drainage system. This 

reduces the drainage resistance T from 200 to 50 

days; 

- with the simulated surface water levels for the 

three reference points the transpiration for the 

surface water management alternatives I, II and IV 

(Section 9.1) was simulated and depicted as a func-

tion of height above winter level. In Fig. 10.1 the 
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Fig. 10.1. Influence of installing pipe drainage (in 
places where the soil surface is 0.20 m or more below 
the level of the soil surface in the reference simula-
tion point) on the relation between level of the soil 
surface, h , and the average yearly transpiration of 
potatoes, Ei, for soil physical units V, VIII and XI 
with water supply (sm  = 1.5 mm•d-1) 
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Fig. 10.2. Influence of installation of pipe drainage 
(in places within a section where the soil surface 
is 0.20 m or more below the level of the reference 
point) on the relation between height of the winter 
level and mean yearly transpiration, averaged over a 
section, Et , for water supply with s, = 1.5 mm-d -1 

 in section 0-38 

curves for water supply with sin  = 1.5 mm-d-1 are 

shown. 

Installation of pipe drainage indeed gives a 

strong increase of E t  in the low-lying places. This 

is mainly due to a reduction in waterlogging damage, 

but also to an increase of the effects of water sup-

ply. 

The curves of Fig. 10.1 were used to establish 

the relationship between height of winter level and 

Et' averaged over a section for each surface water 

management alternative. This has been done for the 

same five sections used for the establishment of the 

effect of surface unevenness. The effects of the in-

stallation of pipe drainage for section 0-38 are 

shown in Fig. 10.2 as an example. As can be seen from 

this figure drainage of the lowest places causes an  

increase in Et of the section. The optimum value of 

the surface water levels shift to a shallower depth 

(higher level) because the negative effects of high-

er groundwater tables in low places have been re-

duced by the pipe drainage. Also the evapotranspira-

tion on higher places increases, resulting in con-

siderably higher Et 's averaged over a section. In 

Table 10.1 the figures are compared with those of 

Table 9.5, valid for non-drained conditions. 

Pipe drainage in low lying places has on the 

average a positive effect on To of 6.0 mm•a.
-1 , on Tc 

of 6.2 mm•a 1 and on T1.50  of 5.0 mm.a.
-1 . Compared 

with the original values AT
c 	

slightly increases from 

5.6 to 5.8 mm•a 1,  but ST1 50 clearly decreases from 

5.6 to 4.4 ram-a-1 . Installation of pipe drainage in 

the lowest places causes on the average a shift of 

about -0.10 m in the optietal values of depth of weir or 
winter level. So, in case of additional drainage, the 

surface water levels can be raised. 

When by loss of organic matter the soil surface 

drops and hence relatively higher surface water lev-

els occur, the target levels have to be lowered to 

keep the surface water level at optimum depth. This 

adjustment is not necessary when the lowest places 

are pipe-drained. 

10.6. INFLUENCE OF SIZE OF SECTIONS 

The influence of unevenness on the effects of 

water management is considerable (Table 9.6). There-

fore it is important to know the variation in soil 

surface level. An important question is whether it 

is possible to reduce the variation in surface 

elevation within a section. In principle this can be 

achieved in the following ways: 

Table 10.1. Optimal depth of weir crest, hw (m below soil surface), or winter level, W c', m  (m below soil surface), 
of a section and corresponding mean yearly transpiration, E t  (mm-a-1 ), averaged over a gection, for three alter-
natives of surface water management and five selected sections without and with pipe drainage at places with a 
soil surface of 0.20 m or more below the height of the soil surface at the reference point 

Section 	Weir with a fixed crest at 	Conservation, winter level 
1.40 m below soil surface 	1.40 m below soil surface 

	

without pipe with pipe 	without pipe with pipe 
drainage 	drainage 	drainage 	drainage  

Water supply with s r, = 1.5 mm-d-1 , 
winter level 1.40 m below soil surface 

without pipe with pipe 
drainage 	drainage 

h; Et  hw  Et  ho* ,m Et ho ,m Et h* o,m E t h o,m E
t 

W-24 1.50 237 1.40 243 1.60 243 1.50 249 1.65 248 1.55 253 
W-26 1.40 239 1.30 245 1.52 244 1.40 250 1.55 250 1.45 255 
0-34 1.40 238 1.25 243 1.50 243 1.35 249 1.55 249 1.45 253 
0-38 1.35 239 1.25 245 1.50 245 1.40 250 1.52 250 1.45 255 
0-42 1.45 225 1.30 232 1.50 231 1.40 239 1.55 237 1.45 243 

Mban 1.40 235.6 1.30 241.6 1.52 241 2 1.41 247.4 1.56 246.8 1.46 251.8 
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a) leveling of the soil surface. This is very expen-

sive and will never be undertaken just to increase 

the effects of surface water management. The main 

reason for land leveling in practice is that low 

spots within a parcel delay tillage of the whole 

parcel. Hence, this alternative has not been con-

sidered further; 

b) diminishing of the size of sections. In the design 

of the surface water management plan of 'De Monden' 

the differente in winter level between adjacent 

sections is taken about 0.50 m. This criterion was 

based on local circumstances, such as the already 

existing drainage system, location of roads, etc. 

and resulted in 20 sections of about 400 ha each. 

To investigate the size of the sections the fol-

lowing procedure has been applied. With the help of 

the soil map and elevation data, new sections were 

designed. For each section the average yearly trans-

piration with conservation and with water supply were 

determined for different heights of winter level, 

using the curves given in Fig. 9.8. Next the relations 

between height of winter level and average yearly 

transpiration with water supply as given in Fig. 9.9 

were derived for each section. The value of E t  aver-

aged over a section was canpared with the simulated 

value for the reference point. Plotting the changes 

in Et found in this way against the size of the sec - 

tion, Fig. 10.3 is obtained. This figure clearly  il- 

lustrates that enlargement of sections results in a 

loss of E t . 	the basis of such a relationship it 

would have been possible to optimize the size of 

sections in 'De Monden' by comparing the benefits 

with the costs of constructing and operating of 

• .0 
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Fig. 10.3. Relation between size of a section and 
Change in mean yearly transpiration, AEt , averaged 
over the section, derived from data on soil type 
and surface level in the study area 'De Monden' 
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Fig. 10.4. Relation between standard deviation of the 
soil surface level and change in mean yearly trans-
piration, AEt , derived from data on soil type and 
surface level in the study area 'De Monden' 

weirs and inlet structures. In Chapter 11 this item 

will be dealt with. 

The curve in Fig. 10.3 is only valid for regions 

with the same unevenness characteristics as the study 

area. In regions with less microrelief the size of a 

section can be greater, in sloping regions and in 

regions having more microrelief the size of sections 

must be smaller. 

To make the results of this study more applicable 

to other regions, the data used for the construction 

of Fig. 10.3 have been re-processed to produce a re-

lation between the standard deviation of the soil 

surface level of a section and loss in Et . 	stan- 

dard deviation has been chosen as a measure for the 

degree of unevenness. In Fig. 10.4 the result is giv-

en. The relation given in this figure is only valid 

for regions with the same soil types and the same 

cropping pattern as the study area, but the same 

procedure can be applied for other soil types and 

other cropping patterns. 

10.7. HYDRAULIC ASPECTS OF SURFACE WATER MANAGEMENT 

In this section two subjects will be dealt with. 

Firstly the influence of surface water management on 

daily peak discharges and secondly the influence of 

two ways of handling the weirs, viz. automatic and 

hand-operated. 

Generally it is assumed that water supply does 

increase the highest discharge rates which in turn 

may have consequences for the design of watercourses 

and weirs. To verify this assumption the daily peak 

discharges, vpeak , of each year during 1971-1982 were 

simulated for the same soil physical-hydrological unit 

y=-65.96 •X 2657  
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Fig. 10.5. Frequency distribution of daily peak 
discharges over the weir in the period 1971-1982, 
simulated with SWAMP for five different ways of sur-
face water management 

used in Chapter 7 and the alternatives I (fixed weir 

crest), II (conservation) and TV (water supply with 

sm = 1.5 mm.d
-1 ) given in Section 9.1. The three 

populations of 12 values each were plotted on GUMBEL-

paper (Fig. 10.5). The figure shows that with con-

servation and water supply peak discharges with the 

same return period are almost doubled, compared with 

those for a weir with a fixed crest. This doubling is 

not caused by higher surface water levels during sum-

mer, because 11 out of 12 values occur during winter. 

Further analysis showed that the differences in 

peak discharges are caused by the way the weirs are 

modeled. The weir is supposed to move upward or down-

ward with a maximum speed of 0.10 m.d -1 . With an 

automatic weir the upstream water level is kept as 

constant as possible. With a drop or rise speed of 

0.10 m.d-1 water storage in the surface water system 

is negligible and no attenuation of discharge peaks 

. occurs. With a drop/rise speed of 0.02 m.d -1 the wa- 

ter level cannot longer be kept constant in all cases. 

As a consequence storage in the surface water system 

is possible, resulting in a considerable decrease in 

daily peak discharges. In case of a fixed weir the 

surface water level may rise even more when the dis- 

charge increases so that the discharge peak is atten- 

Table 10.2. Influence of automatisation of weirs on 
yearly transpiration, Et , calculated with SWAMP and 
averaged over the period 1971-1982, for two specific 
widths of weir, aw  

Average yearly transpiration, Et 

 (n n. 

automatic 	hand-operated 
weir 	 weir 

aw  = 0.003 m.ha-1 

 aw = 0.001 m.ha
1 

uated, resulting in lower values of daily peak dis-

charges. 

In SWAMP the weirs are modeled as if they were 

automatically adjustable. In practice, however, the 

automatisation of weirs is not self-evident. In 

principle, it is possible that the operator adjusts 

the weir by hand when needed according to the opera-

tional rules. 

In the following the hydrological effects of 

automatic versus hand-operated weirs will be inves-

tigated. The simulated average yearly transpiration 

of the reference, defined in Chapters 7 and 8, for 

water supply with maximum capacity of 1.5 mm•d -1  will 

be used. 
The operation of the hand-operated weir is model-

ed as follows. Each week the weir is 'visited' and 

adjusted according to the operational rules. If the 

actual upstream surface water level differs more than 

0.05 m from the target level, the weir level is ad-

justed with 0.10 m. Even if the difference is more 

than 0.10 m, the adjustment is never more than 0.10 

m to avoid too great fluctuations. 

In Table 10.2 the average yearly values of E t 

 for both modes of operation are given. Automatisation 

of weirs does increase Et with 1.8 mm•a
-1 when the spe-

cific weir width aw is 0.003 m•ha -1 . If the specific 

width is made three times smaller (aw  = 0.001 m•ha-1 ), 

the difference in Et becomes 2.5 mm.a-1  in favour of 

the automatic weir. From the results it can be con-

cluded that automatisation of weirs offers only a 

small advantage. 

10.8. SECONDARY EFFECTS 

Surface water management has a number of effects 

which are not incorporated in SWAMP because the nec-

essary knowledge was not available. Effects have also 

been left out to get a manageable system of models 

or because the effects are not measurable. A number 

	

281.8 	 280.0 

	

281.9 	 279.4 
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of possible effects, termed secondary effects, are 

listed below. They are: 

a) Decrease in variation in transpiration from year 

to year, causing a more constant production. For 

the reference, the simulated reduction in poten-

tial transpiration during 1971-1982 has a standard 

deviation of 41.3 mm (14%) for altemative I 

(weir trest at 1.40 m below soil surface). For 

alternative V (water supply with s m  = 2.50 mm-d 1 ) 

this value is 16.6 mm (6%). 

b) With surface water management the length of the 

growing season may be prolonged, because higher 

transpiration means better growing conditions. 

This effect is especially important for potatoes. 

In sprinkler irrigation experiments performed dur-

ing the year 1982, a lengthening of the growing 

season of sprinkled potatoes of approximately 30 

days was found (Van der SCHANS et al., 1984). Al-

though the effect of sub-irrigation will be less 

pronounced, it can be posed that the ignoracion of 

this effect in SWAMP underestimates the benefits 

of water supply. 

c) Decrease of rooting depth. In the soil physical 

unit used as reference the rooting depth is assamed 

to be governed by mechanical and chemical proper-

ties of the soil layers and not by unfavourable 

hydrological conditions. With a high groundwater 

level rooting depth may be limited. In practice it 

is also possible that roots die after rise of the 

groundwater table and have a slower regrowth after 

the groundwater recedes. In SWAMP the thickness of 

the root zone is fixed and thus is independent of 

hydrological conditions. The root water uptake in-

deed reduces under wet conditions, but as soon as 

the root zone becomes drier, this effect vanishes. 

d) Preservation of peat. Decomposition of organic mat-

ter is favoured by good aeration and high tempera-

tures. Low groundwater levels therefore are favour-

able for a high decomposition rate. Under water 

conservation and especially under water supply the 

groundwater levels are considerably higher, result-

ing in a slower decomposition of organic matter. 

e) Change in frequency of maintenance of watercourses. 

Larger water depths during summer may hamper the 

growth of water weeds. On the other hand they must 

be maintained properly. 

f) The major part of supplied water is used to raise 

groundwater levels. This extra supply to the 

groundwater system offers the opportunity to in-

crease water withdrawal from the groundwater sys-

tem for industries or municipal water supply. 

g) with water supply 'foreign' water is introduced,  

with possible negative effects on the quality of 

the groundwater. 

h) In this study the economical feasibility of sprink-

ler irrigation from surface water has not been in-

vestigated because it is practically not applied 

in the study region. In other regions sprinkler 

irrigation from surface water is applied more fre-

quently. If in the near future it also will be ap-

plied in the study region, the surface water sys-

tem, used for sub-irrigation, is also suitable for 

sprinkler irrigation. 

i) With high surface water levels during summer the 

growth of grass on part of the side walls of water-

courses .  may be hampered, which may decrease their 

stability. 

j) From a cultural - historical point of view the 

small canals in the cut-over peat region should 

contain water also during the growing season. Be-

sides, these watercourses offer good possibilities 

for recreation (fishing). 
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1 1 . ECONOMICAL ANALYSIS OF THE EFFECTS OF SURFACE 
WATER MANAGEMENT 

11.1. INTRODUCTION 

The net hydrological effects of water conserva-

tion and water supply, given in Table 9.9, are ex-

pressed as a percentual increase of the average year-

ly transpiration, compared with the zero situation. 

For an economical analysis these effects have to be 

converted into financial effects i.e. the increase in 

income of the land users in the area (Section 11.2). 

To effectuate this increase, costs have to be 

made by waterboard, provincial and national water 

authority. These costs can be divided into investment 

costs and costs of operation and maintenance, and will 

be discussed in Section 11.3. Also the economical 

feasibility of the water conservation and water supply 

plan for the study area is treated. 

In Section 11.4 the internal rate of return of 

plans for water conservation and water supply will be 

dealt with. 

Effects of surface water management depend on 

the size of the section, as has been discussed in 

Chapter 10. Therefore the agricultural benefits of 

surface water management to the area 'De Monden' can 

be expressed as a function of number of sections. Al-

so costs of surface water management can be expressed 

as function of the number of sections. From compari-

son of both functions an optimal size of sections can 

be derived as will be shown in Section 11.5. 

In case the costs of investments to realize the 

effects of surface water management in a certain re-

gion are not known, it is possible to generate a de-

mand function for water at the inlet point of that 

region, as will be discussed in Section 11.5. 

11.2. INCREASE IN AGRICULTURAL INCOME DUE TO SURFACE 

WATER MANAGEMENT 

In Table 9.9 the average yearly net hydrological 

effects per unit area of arable land caused by water 

conservation and water supply have been presented. 

These data will be converted to the effects on the 

average yearly income from agricultural products in 

the region 'De Monden' in three steps, viz. from 

transpiration to erop yield, from crop yield to bene-

fits per ha and from these to benefits in the area.  

a) Conversion of transpiration into crop yields 

From molecular diffusion equations for transpi-

ration and photosynthesis the following expression 

can be derived (FEDDES, 1984): 

Y A 
Et  Ae 

where Y is dry matter production of a crop (kg.ha -1 . 

d-1 ), A is a proportionality constant (kg.ha -l .mm-1 . 

mbar) and Ae is saturation vapour pressure deficit 

(mbar). Summing eq. (11.1) over the total number of 

days of the growing season, the yield Y can be ob-

tained as a function of E t. This method could not be 

applied because A is not known. Besides, in SWAMP no 

data on Ae were used. 

Assuming that the maximum yield, Y max , is reach-

ed at potential transpiration, E t p , one can write: 

max  A' 
Et,p Ae (11.2) 

If A in eq. (11.1) and A' in eq. (11.2) are the 

same, one arrives at: 

Y 	Et  

Ymax Et,p 

The use of eq. (11.3) does not include the occurrence 

of drought sensitive periods. 

Eg. (11.3) can only be applied if Ymax  is known. 

However, for the period 1971-1982, used for simula-

tien, no data on max  were available. 

The most simple expression widely used in the 

Netherlands is (WERKGROEP LANDBOUWKUNDIGE ASPECTEN 

VAN GRONDWATERWINNING, 1984): 

Y (n) = E (n) 
max 

 
Et,p  

where Y 	(n) is maximum yield in year n (kg.ha 1 ), 

Et D (n) is potential transpiration in year n (mn.a 1 ), 

Y 	is average yearly maximum yield (kg•ha -1 ) and max  
Et p is average yearly potential transpiration (mm-

a-1 ). In eq. (11.4) implicitly a linear relation be-

tween transpiration and reduction in yield has been 

assumed. Taking further that differences in transpira- 

(11.3) 

max 	t,p (11.4) 
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tion do not influence the distribution of the dry mat-

ter production between harvestable and non-harvest-

able parts of the crop and ignoring differences in 

dry matter content in the harvestable parts from 

year to year, one has: 

Et (n) 	 
Yh (n) = 	 h,max Et,p 

(11.5) 

where Yh (n) is actual harvestable yield in year•n (kg 

marketable productha 1 ), Et (n) is actual transpira-

tion in year n (nu•a -1 ) and Yh  is average yearlymax 
maximum harvestable yield (kg marketable product-ha -1 ). 

Instead of actual yields and transpiration, which 

are different from year to year, average actual yields 

and transpiration can be used, resulting in: 

... E
t  y 	 

Yh 	 h,max Et ,p 

where Yh and Et are average yearly actual yield (kg• 

-1 ) ha ) and transpiration Onn-a ) respectively. 

The quotient Et/Etp is Biven in Table 9.6. These 

data are used for sugar beets and winter wheat as 

well. The reasoning for this is that the actual E t  

for potatoes may differ from that of the standard 

crop due to conditions on headlands, along edges of 

fields etc. and the fact that different varieties of 

potatoes (early, middle, late) are grown. Further E t 

 for sugar beets and potatoes will not differ much. 

Winter wheat is harvested somewhat earlier and 

could have a lower E t , but the difference in harvest-

ing time between early potatoes and winter wheat is 

small. At the end of the growing season transpiration 

is diminishing due to lower radiation and in addition 

the part of wheat in the cropping pattern is relative-

ly small. In any case a correction for the real crop-

ping pattern will be very small. 

For the maximum yield one can take the yield of 

an 'ideal' crop growing under optimal conditions of 

water and nutrient availability and without diseases. 

In practice, however, this yield never will be ob-

tained. To get actual maximum yields SLOTHOUWER 

(1982) collected data on average crop yields of all 

crops cultivated in the study region during the period 

1975-1982. From this data the yields in 1978 and 1979 

were chosen as representative for the maximum crop 

yields onder practical circumstances because in these 

years no reduction in transpiration occurred (GREVEN, 

1980; HENSUMS, 1980). According to ROZENVELD (1982) 

the global radiation in 1978 and 1979 was lower than 

nonnal, resulting in a reduction in maximum yield of 

3%. Therefore the yields of 1978 and 1979 have to be 

increased by 3% to arrive at the average yearly 

maximum crop yields under practical circumstances. 

For potatoes, sugar beets and winter wheat these data 

are 45.3 x 10 3  kg•ha-1 , 49.6 x 10 3  kg•ha-1  and 5.7 x 
1 103 kg•ha , respectively. 

Taking into account the part of the various 

crops in the cropping pattern, the hydrological ef-

fects now can be converted to effects on yield. 

b) Conversion of crop yield into benefits 

The effects of surface water management on 

yields have been converted into benefits per ha 

using 1980 prices and cropping pattern (SLOTHOUWER, 

1982), taking into account the additional costs for 

harvesting and marketing. An extra yield of 1% result-

ed in a benefit of Dfl 48.25 per ha arable land. 

c) Conversion of benefits per ha into benefits 

per subregion and benefits for the entire study 

area 

Figures in Table 9.9 give the hydrological ef-

fects per unit area including the surface water sys-

tem. The fractional area of the surface water system 

is 0.06 and the benefits per ha including the surface 

water system are therefore 0.94 x Dfl 48.25 = Dfl 

45.35. Miltiplying the areas per subregion with this 

figure yields the average yearly increase in agricul-

tural income per subregion. Slumring these values gives 

the benefits for the entire region. 

In Table 11.1 the increase in the total agricul-

tural incomes for the subregions and for the whole 

are 'De Monden' for water conservation and water sup- 

Table 11.1. Average annual increase of additional 
agricultural income (103 Dfl) due to conservation 
and water supply, both for normal and restrictive 
surface water management 

Conser- 
vat ion 

Water supply 

s 	= m 
0.75 

s 	= m 
1.50 

s 	= m 
2.50 

Normal management 

total area 520 318 464 547 
subregion west 59 56 74 86 

middle 314 135 197 236 
east 147 127 193 225 

Restrictive management 

total•area 311 455 649 765 
subregion west 35 78 103 120 

middle 188 189 276 330 
east 88 178 270 315 

(11.6) 
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mm.d 1 correspond then with sr-values of 0.53, 1.07 

The values of sm of respectively 0.75, 1.5 and 2.5 

and 1.78 m3 •s -1 respectively. 

ply with three maximum supply capacities are given. 

Also the figures under more restrictive management 

are presented. 

11.3. GOSTS OF SURFACE WATER MANAGEMINT 

To make surface water management possible, farm-

ers, waterboard, provincial and national authorities 

have to invest capital and to make operational and 

maintenance costs. In the following the costs in-

volved for the different parties will be discussed. 

Costs for farmers 

Even without water conservation or water supply, 

the 'wijken' have to be in goed maintenance to give 

adequate drainage. This implies that no additional 

costs for water management have to he made on farmers 

level. 

Costs for the waterboard 

The waterboard 'De Veenmarken' provided data on 

the necessary investments (SLOTHOUWER, 1982). These 

data are presented in Table 11.2. 

The variable costs at waterboard level are: 

- costs of operation of weirs and inlet structures; 

- costs of maintenance of these structures; 

- costs of maintenance of main canals. This mainte-

nance has to be done anyway, so additional costs 

are negligible; 

- energy costs for pumping water. This applies to 

section W-22 only; the other sections are supplied 

by gravity flow from the inlet point. 

Costs for the province 

To pump the water from Lake IJssel to the inlet 

point of the waterboard five pumping stations have to 

Table 11.2. Total investments and average annual 
operational costs, both for normal and restrictive 
surface water management, in 103 Dfl of water conser-
vation and water supply according to the waterboard 
'De Veenmarken', in prices of 1980 

Conser- 	Water supply 
vation  

sm  = 

0.75 

sm  = 

1.50 

sm  = 

2.50 

Investments 600 691 691 691 

Normal management 
operational costs 9 11 12 12 

Restrictive management 
operational costs 9 11 12 13 

Table 11.3. Total investments and average annual oper-
ational costs, both for normal and restrictive surface 
water management, in 10 3  Dfl of water supply to the 
region 'De Monden' to be made by the provincial water 
authority, in prices of 1980 

Water supply 

sm = 

0.75 

sm 
1.50 

sm  = 

2.50 

Total investments 1280 2540 4230 

Operational costs 
normal management 77 116 131 
restrictive management 92 139 157 

be installed. The WERKGROEP WATERAANVOER (1983) cal-

culated that the total investments for each pumping 

station are Dfl 475 000 per m3 •s -1  supply capacity. 

Other investments in the primary system are not re-

quired because use is made of existing canals of 

adequate dimensions. Therefore the investments at 

provincial level are 5 x Dfl 475 000 = Dfl 2 375 000 

per m3 •s-1  supply capacity. 

The maximum supply capacities are given in mm-

d 1 . It is assumed that half of the area occupied by 

infrastructure and buildings is unintentionally re-

ceiving water. So, 10% has been added to the amount 

needed for tilled land and for the surface water 

system itself. Accounting for this 10%, the maximum 

supply capacity, sm  (on•c1-1 ), can be converted into 

supply capacities, s r  (113 .s -1 ), by: 

sr  = sm  x 5600 x 1.1/8640 
	

(11.7) 

The variable costs at provincial level are energy 

costs for pumping and costs of operatien and mainte-

nance. They are Dfl 0.02 and Dfl 0.015 per m 3  respec-

tively in 1980 prices. From the hydrological calcula-

tions (Table 9.9) the average yearly amount of water 

to be supplied to the area is known, hence the vari-

able costs to be made at provincial level can be cal-

culated. 

Investments and average annual operational costs 

at provincial level to realize water supply in the 

area 'De Monden' are summarized in Table 11.3. 

Costs at national level 

In the framework of the PAWN-study a model has 

been developed for the operation of the national wa-

ter supply system (ABRAHAMSE et al., 1982). In this 

study no costs of investments or variable costs are 

given. For the time being it has been assumed here 

95 



that no costs have to be taken into account to deliv-

er the water at the inlet point(s) of the provincial 

authority. Because on national level water is scarce 

in dry summers, in principle some costs should be 

taken into account (accounting price), but this is 

left out of consideration. 

11.4. INTERNAL RATE OF RETURN OF SURFACE WATER 

MANAGEMENT 

In Tables 11.1, 11.2 and 11.3 eight alternatives 

of surface water management are distinguished. To in-

vestigate whether it is profitable to invest in a 

particular surface water management plan, one has to 

discount future benefits and variable costs. This is 

done via the internal rate of return. That rate, 

is found from: 

 B(n) 
 - 	

N I(n) + Co(n) 
 E 	  n =1 0+1) n 	n=1  (1+i) n 	(1+i) N  

where N is the lifetime of the project (years), B(n) 

is benefits of the plan in year n (Dfl), I(n) is in-

vestments in the plan in year n (Dfl), C o (n) is opera-

tional costs in year n (Dfl) and R N  is rest value of 

the facilities in year N. 

For the surface water management project 'De 

Monden' the investments were done in 1978 and 1979, 

while 1979 was the first year with benefits. Taking 

a time horizon of 30 years and R N  zero, eq. (11.8) 

becomes: 

30 B(n) - Co (n) 	I1978 	11979  - 0 n=2 (1+i)n 	(1+i) 	(1+i) 2 
(11.9) 

Because of varying weather conditions from year to 

year B(n) and Co (n) will vary considerably. 

For the internal rate of return it makes quite 

10 - 

8 - 

c 

2- 

Fig. 11.1. Frequency of the internal rate of return 
calculated for 46 generated 30 year -long series of 
benefits 

Table 11.4. Internal rates of return (-) of water 
conservation and conservation plus water supply 
projects for the region 'De Monden' 

Conser- 	Water supply 
vation 

sm  = 

0.75 

sm = 

1.50 

sm  = 

2.50 

Normal management 
Restrictive management 

0.494 
0.352 

0.100 
0.152 

0.089 
0.132 

0.071 
0.104 

a difference whether years with higher positive ef-

fects occur soon after realization of the project or 

more towards the end of the time horizon, as can be 

easily seen from eq. (11.9). 

To investigate these stochastic aspects, the fol-

lowing procedure has followed (Van WALSUM and Van 

BAKEL, 1983). The twelve yearly effects of water sup-

ply with a supply capacity of 1.5 mm•d -1 , calculated 

for the reference for the period 1971-1982, have been 

considered as a representative sample of the tree 

population. This sample was used to generate 46 series 

of 30 successive yearly effects. From each series the 

internal rate of return has been calculated. In Fig. 

11.1 the frequency distribution of these calculated 

internal rates of return is given. As can be seen, 

the distribution is skewed and its variance is very 

high. The mean value of the internal rates is 0.156, 

against a rate for constant hydrological effects of 

0.148. This result leads to the conclusion that it is 

justified to assume B(n) and Co (n) to be equal to the 

average yearly benefits and operational costs, given 

in Tables 11.1, 11.2 and 11.3. Because of technologi-

cal developments, the physical yields of agricultural 

crops will increase. On the other hand, the acreage of 

agricultural land, prices of products and operational 

costs when corrected for inflation in general will 

decrease (LOCHT and SLOTHOUWER, 1978). An analysis of 

these changes is beyond the scope of this study, but 

it is assumed that they cancel out. 

Data from Tables 11.1, 11.2 and 11.3 together 

with eq. (11.9) give the internal rate of return of 

the different water management alternatives as shown 

in Table 11.4. The internal rate of return of con-

servation is very high, even with a restrictive sur-

face water management. The figures show that the in-

vestments in water conservation pay back within two 

years. 

The internal rates of return of water supply are 

the lower the higher the supply capacity (Fig. 11.2). 

It should be remarked, however, that the relationship 

depicted in this figure may not be used to find for a 

particular choice of internal rate of return the corre- 

RN 	- 0 	(11.8) 

,n n, 
10 15 20 25 30 35 40 45 50 55 

Internal rate of return, i (%) 
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Fig. 11.2. Relationship between supply capacity and 
internal rate of return of water supply for normal 
and restrictive surface water management 

sponding optimal water supply capacity. This aspect 

will be treated in the next section. 

11.5. SUPPLY CAPACITY, WATER DISTRIBUTION AND SIZE OF 

SECTIONS BASED ON INTERNAL BATE OF RETURN 

Supply capacity 

On the basis of data about additional agricul-

tural income, investment costs and operational costs 

corresponding with the three supply capacities an 

analytical relationship can be established between 

supply capacity and additional agricultural income, 

investments and operational costs, respectively. They 

can be expressed as follows: 

I 	= 691 + 475 sr (11.10) 

Bn 	= -448 + 193 ln(sr x 100); r
2 = 0.997 (11.11) 

Br 	= -605 + 266 ln(s r x 100); r
2 = 0.996 (11.12) 

C on = -97 + 47 ln(s r x 1 00) ; r
2 = 0.971 (11 .13) 

C or  = -117 + 56 ln(s r x 100); r
2 = 0.977 (11.14) 

where subscripts n and r refer to normal and restric-

tive surface water management, respectively. As an  il-

lustration the relations given in eqs. (11.11) and 

(11.13) have been given in Fig. 11.3. The derivative 

of the above relationships with respect to s r  yields 

the increase in agricultural income, in costs and in 

investments due to an increase in supply capacity. 

With the figures obtained in this way the internal rate 

of return of an increase in supply capacity can be 

calculated. 

The approach described by LOCHT (1980), and 

called the investment steps method, is followed here. 

The supply capacity is increased in finite steps of 

0.1 m3 .s -1 . For each increment the increase in agri-

cultural income, in investments and in operational 

costs is calculated with eqs. (11.10) through (11.14). 

Subseguently the internal rate of return of these 

increments is calculated, using eg. (11.9). 

The results of this procedure for normal and 

restrictive surface water management are presented in 

Figs. 11.4 and 11.5. It has been assumed that water 

supply will always involve a supply capacity, s r , of 

at least 0.55m3 .s -1 corresponding with sin  = 0.75 

mm.d 1 . 
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Fig. 11.3. Agricultural benefits, B,, and operational 
costs, Co , of water supply to 'De Maden' as a function 
of cupply capacity for normal surface water management 

Fig. 11.4. Internal rate of return of increase of sup-
ply capacity to the area 'De Monden' of 0.1 m•s -1  as 
function of supply capacity for normal surface water 
management 
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From the figures the supply capacity, s r , corre-

sponding to a particular internal rate of return, 

can be determined directly. E.g. if the latter has 

to be at least 0.10 (a political decision), the sup-

ply capacity to be installed has to be restricted 

to 0.55 m3 •s-1 for normal management (Fig. 11.4). On 

the other hand, for any proposed supply capacity the 

figures provide the marginal internal rate of return. 

This return rate is higher for 'restrictive' manage-

ment. 

Comparing Fig. 11.2 with Figs. 11.4 and 11.5, 

it must be remarked that decisions about the supply 

capacity have to be based on the marginal internal 

rates of return (depicted in Figs. 11.4 and 11.5) 

and not on the internal rates themselves, given in 

Fig. 11.2. 

Optimal water distribution within the area 

In the approach given above it has been assumed 

that the entire area 'De Monden' will get the same 

supply capacity. However, the hydrological effects 

show that the western part has a far lower response 

to water supply than the remainder of the area. 

Therefore it is expected that by optimizing the dis-

tribution of supply capacity between the different 

subregions a higher internal rate of return can be 

achieved. To find this out the water supply capacity 

is increased in small steps of 0.05 m3 •s -1 . Every 

time the additional capacity is allocated to the sub-

region with the highest marginal internal rate of 

return. This procedure has been worked out for nor-

mal surface water management (Fig. 11.6). To compare 

2.0 

the result with the situation without differentiation 

between the subregions, the latter also is depicted. 

With a particular choice of the internal rate of 

return the corresponding supply capacity now is dif-

ferent from the original one. E.g. if for i = 0.065, 

differentiation decreases the supply capacity from 

0.0 	 05 	 10 
	

1.5 
Supply capaci y, s r  (m 3  .s 

Fig. 11.6. Effect of differentiation of supply capac-
ity between subregions on the relationship between 
the internal rate of return of an increased supply 
capacity to the area 'De Monden' for normal surface 
water management compared with the same relationship 
without differentiation 
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0.75 to 0.70 m3 .s 1 . The distribution of supply ca-

pacity to the different subregions is then west 0.0 

m3 .s 1 , middle 0.35 m3 •s-1 and east 0.35 m3 •s -1 . The 

ratio between agricultural benefits minus operational 

costs and total investments increases from 0.114 to 

0.123. 

The practical feasibility of an optimized dis-

tribution of water within the area can be questioned, 

because a waterboard aims at an equal allocation of 

its services over the water users. However, certain 

differences could be possible, especially when all 

persons involved see the advantage of differentiating 

between areas with different effects. 

Optietal size of sections 

From Section 10.6 it follows that the hydrolog-

ical effects of surface water management depend on 

the size of the sections (see also Fig. 10.3). Accor& 

ing to the same procedure described in Section 11.2, 

the relationship depicted in Fig. 10.3 can be convert-

ed to a relationship between size of sections and de-

crease of agricultural benefits from water supply 

with sm = 1.5 mm-c1-1  for the entire area. The deriva- 

tive of this relationship expresses the marginal ef-

fect of size changes as a function of the size itself. 

Also the influence on capital investments and oper-

ational costs can be expressed as a function of the 

size of the sections using data given by SLOTHOUWER 

(1982, 1985). With these relationships the internal 

rate of return of a decrease of the size of the sec-

tions has been calculated; it is depicted in Fig. 

11.7. As can be seen from this figure, the section 

size is about 220 ha when i is taken 10%, which is 

significantly smaller than actually designed (400 ha). 

When the relationship depicted in Fig. 10.3 is re-

placed by a linear one, the relationship in Fig. 
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11.7 also changes. Then the size of the sections for 

i = 10% becomes 350 ha. This proves that, apart from 

the arbitrary choice of i = 10%, the result for the 

optietal size of sections highly depends on the accu-

racy of the relation in Fig. 10.3. 

11.6. GENERATING A DEMAND FUNCTION FOR WATER 

The determination of the internal rate of return 

of investments for water supply discussed above was on-

ly possible because data on the necessary investment 

in the primary system was available. Usually this will 

not be the case and then one has to generate a demand 

function for water for the inlet point of the water 

supply region. This demand function for water is the 

relation between amount of water demanded and the price 

the user is willing to pay. In general, this price will 

be lower the higher the already existing supply capac-

ity is, because the additional quantities of water 

will give diminishing returns. 

For the generation of demand functions it is nec-

essary to fix an interest rate for the necessary capital 

investment. In the following the demand functions of 

the region 'De Monden' will be established at two fix-

ed values for the yearly costs of investments. These 

yearly costs consist of interest and depreciation. The 

method of annuities, applied here, calculates the 

yearly costs as a constant amount during the lifetime 

of the project. With a particular value for the in-

terest rate and the lifetime of the works as refer-

ence for depreciation, the annuity, a, is known. At 

an interest rate of 0.05 and a time horizon of 30 

years the annuity becomes 0.065. With this annuity 

the demand and supply curves of water will be estab-

lished. To show the influence of the annuity, also 

demand curves for a = 0.10 have been constructed. 

The necessary investments for water supply in 

the area are given in prices of 1980 in Table 11.2. 

They are independent of the supply capacity. Conse-

quently the yearly costs for the investments are 

0.065 or 0.10 times the investments. 

From the figures of Tables 9.6 and 11.1 a rela-

tionship between average yearly amount of supplied 

water, Qs , and the net increase in agricultural in-
come, B, has been deduced. These relationships 

0 
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1600 400 	200 Bn  = 0.14 Qs 	 (11.15) 

Fig. 11.7. Internal rate of return of decrease of 
size of sections as function of size of sections, for 
sm  = 1.5 mm.d -1  and normal surface water management 
for two different relationships between size of sec-
tions and change in average transpiration 

Br  = 0.16 Qs 	 (11.16) 

where Bn  and Br refer to water supply for normal and 

restrictive management. These relationships indicate 
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Table 11.5. Average additional agricultural income 
(103  Dfl) and average yearly total costs of water sup-
ply (103  Dfl) at waterboard level with two values 
for annuity, a, and three yearly amounts, Q, (10 3  m3), 
for both nonnal and restrictive surface water manage-
ment 

Qs Additional 
agricultural 

income 

Total costs 

a = 0.065 a = 0.10 

Normal 2180 318 56 80 
management 3420 464 57 81 

4000 547 57 81 

Restrictive 2740 455 56 80 
management 4120 649 57 81 

4680 765 58 82 

Fig. 11.8. Demand and supply curves for water at the 
inlet point of the area 'De Monden' for annuities 
0.065 and 0.10, and normal surface water management 

a marginal productivity of water of Dfl 0.14 per m 3 

 and Dfl 0.16 per m3 , respectively. The linearity of 

these relationships is surprising, because one might 

expect diminishing returns at higher supply levels. 

The reason may be that large amounts of water are 

only applied in dry years, when the efficiency of 

water supply is high. 

At waterboard level the net benefits are the ef-

fects after eq. (11.15) or eq. (11.16) minus the in-

vestment costs (Dfl 49 000 or Dfl 69 000) and minus 

the operational costs (Dfl 0.035 per m 3). Figures 

for three different supply levels both for nonnal 

and restrictive surface water management are present-

ed in Table 11.5. From these data the waterboard can 

calculate an accounting price per m 3  water. This is 

the maximum price at which the waterboard would be 

willing to buy water for from the provincial govern-

ment. Based on these prices, the demand curves for 

water to be supplied to the region 'De Monden' have 

been constructed. They are presented in Fig. 11.8 

for normal management and in Fig. 11.9 for restrictive 

management:For normal management the waterboard would 

• -----• Demand curve, annuity is 0.065 
• -----• Supply curve, annuity is 0.065 

Demand curve, annuity is 0.10 
a-----,a Supply curve, annuity is 0.10 

•D-C Break-even point 	 a 

8 	A-..q 
á • 

‘1, .1, 

3000 	 4000 	3 	35000 
Average yearly supply and consumption (10 .M1 

Fig. 11.9. Demand and supply curves for water at the 
inlet point of the area 'De Monden' for annuities 
0.065 and 0.10, and restrictive surface water manage-
ment 

be willing to pay Dfl 0.125 and Dfl 0.10 per m 3  re-

spectively for an average yearly supply of 2300 x 10
3 

m3  to the region and Dfl 0.13 and Dfl 0.12 respective-

ly for a supply of 4000 x 10 3  m3 . The demand curves, 

therefore, give prices which are nearly independent 

of the quantities involved. 

To obtain the average yearly amount of water 

which actually will be 'boughtt from the provincial 

water authority, one has to know the supply curve of 

the provincial water authority. As an example, the 

supply curve for the region 'De Monden' is construct-

ed using the data given in Table 11.3. Again, annui-

ties of 0.065 and 0.10 are assumed (Table 11.6). 

These data are used to obtain the supply curves of 

the provincial water authority. These curves are 

also depicted in Fig. 11.8 and Fig. 11.9. The break-

even points are at 3100 x 10 3  and 1900 x 103  for 

normal management and at 4200 x 10 3  and 3100 x 103 

for restrictive management. The corresponding prices 

are Dfl 0.12 and Dfl 0.095 per m 3  for normal, and 

Dfl 0.15 and Dfl 0.135 per m3  for restrictive manage-

ment. 

If the provincial water authority would have a 

Table 11.6. Total yearly costs of water supply (10 3 
 Dfl), at provincial level with two values for annuity, 

a, and three annual amounts, Q s  (103  m3), for both 
nonnal and restrictive surface water management 

Qs 	Total costs 

a = 0.065 a = 0.10 

Normal management 
	

2180 
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3420 
	

281 
	

370 
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Restrictive management 
	

2740 
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4680 
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demand function for water for all regions within its 

territory, and the annual costs to realize water sup-

ply, it could obtain an optimal distribution of water 

over the province and generate a demand function of 

water at its inlet point(s). If all provincial water 

authorities should apply this procedure the national 

water authority must be able to make an optimal dis-

tribution of water over the entire country and set a 

price for the water. With this price the provincial 

water authority in turn can generate supply curves 

for the inlet points of the waterboards. 
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SUMMARY AND CONCLUSIONS 

With a growing population and the increase of 

economic activities water of good quality can became 

scarce, even in a humid country like the Netherlands. 

This problem calls for proper water resources manage-

ment at all levels, i.e. national, provincial, water-

board and users level. Because of the interrelation-

ships between the different levels, a systematic ap-

proach using techniques developed in Systems Engi-

neering can provide a common basis to arrive at a 

proper solution. The general concepts of Systems 

Engineering are shortly described in Chapter 2, to-

gether with the application of this approach to sur-

face water management in the Netherlands. From this 

description follows that especially at waterboard 

level water resources management nowadays is still 

performed in a traditional way. However, because of 

ever growing intensivity of agriculture, demands for 

nature conservation and increasing groundwater ex-

tractions the need for a more fundamental approach 

of surface water management practices is obvious. To 

that end a case study was undertaken, the results of 

which are described in this report. 

The study region with an area of approximately 

8000 ha, described in Chapter 3, is part of a vast 

almost completely reclaimed raised bog region at the 

border of the provinces of Groningen and Drenthe. It 

covers approximately one third of the area of the 

waterboard 'De Veenmarken'. The cut-over peat region 

is mainly used for arable farming. 

Geo-hydrological information shows that the ba-

sis of the groundwater system is formed by clayey de-

posits of tertiary age at a depth of about 120 m be-

low soil surface. Above this basis a layer of 40 m of 

mostly coarse sand forms the lower aquifer. During 

the Cromerian Interglacial clay and peat was depos-

ited on top of this layer. During the Saalian Glacial 

an ice-pushed ridge called the 'Hondsrug' has been 

formed along the western border of the area. The wide 

and deep valley east of this ridge was later on filled 

with rather coarse sand forming the middle-deep 

aquifer of about 25 m. During the Weichselian Glacial 

a cover sand layer of approximately 15 m thickness 

was deposited forming the upper or phreatic aquifer. 

During the Holocene a vast raised bog area east of 

the 'Hondsrug' was formed. 

From the beginning of the 17th century peat was 

harvested in a systematic way by digging a system of  

canals which were used for the shipping of the dried 

peat. During the peat harvesting, the upper 0.5 m of 

the peat was left behind because it was not suitable 

for burning. In reclaiming the area this peat was 1ev-

elled and covered with sand from the canals. The prop-

erly reclaimed land gave good opportunities for agri-

culture use because the soil profile had a large water 

holding capacity and rather good drainage conditions 

because of the presence of ditches and a network of 

canals that simultaneously could be used for transport 

purposes. The poor soil fertility was overcome by using 

city refuse and later on commercial fertilizers. 

The arable land use caused a steady decomposition 

of the peat layer so that the soil surface was lower-

ed, the water holding capacity of the soil decreased 

gradually and the drainage situation detoriated. Af-

ter World War II when mechanization in agriculture and 

road transport became common in the area, the transport 

function of the canals vanished and drainage conditions 

could be improved by maintaining lower open water lev-

els. To improve the water holding capacity of the soil 

and the vertical water movement, hampered by locally 

present less penneable layers at the boundary between 

peat and subsoil, soil improvement (sub-soiling) was 

carried out on a large scale and is still going on. 

Around 1977 the waterboard 'De Veenmarken' set 

up a new surface water management plan in which water 

conservation and additional water supply in dry peri-

ods were provided for. For this purpose possibilities 

for manipulating open water levels were realized by 

constructing a number of weirs and inlet structures. 

This system present in the study area is described 

in Chapter 3. Water levels during winter are kept as 

low as possible, while in spring they are raised to 

conserve water in the area. By external water supply 

subsurface irrigation is possible. 

The way in which the open water levels are ma-

nipulated is based on practical experience. Because 

weather conditions vary considerably from year to 

year, the most desired open water levels will do too. 

A better founded decision about these levels and the 

time they have to be established can be based on re-

sults of field experiments or on model computations. 

Field experiments are very time consuming and the 

results only held for circumstances encountered dur-

ing the time they are carried out. Therefore hydro-

logical modeling was preferred. 
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For the study region a model based on physical-

mathematical principles was developed. Theoretical 

backgrounds and parameters necessary to describe the 

hydrological system of the area are given in Chapter 

4. For modeling purposes the hydrological system was 

subdivided into four subsystems: the atmosphere-crop 

system, the unsaturated zone, the groundwater system 

and the surface water system. 

In Charter 5 where the actual modeling is de-

scribed, special attention is paid to the different 

possible ways of coupling the distinguished subsystems 

and the consequences of the different ways of coupling 

for the final model. The final simulation model called 

SWAMP (Surface WAter Management Program) that contains 

all distinguished subsystems in a one-dimensional form 

offers the possibility to compute the effects of sur-

face water level manipulation on groundwater depth and 

crop transpiration. The regional groundwater flow is 

incorporated in the lower boundary condition of the 

unsaturated part. The spatial distribution of this 

flow over the area is calculated separately with the 

finite element model for saturated groundwater flow, 

FEMSATS. 

Calibration and verification of both SWAMP and 

FEMSATS is described in Chapter 6. The calibration of 

parameters for the saturated groundwater system was 

restricted to the drainage resistance and the resis-

tance of less permeable layers between the aquifers. 

The verification of FEMSATS was limited because of the 

restricted accuracy of available discharge data. A 

direct verification of the unsaturated flow part in 

SWAMP was not possible because during the measuring 

period hardly any reduction in transpiration occurred 

because of weather conditions. However, verification 

with thermal infrared images from an InfraRed Line 

Scanning (IRIS) flight in 1982 showed a good agree-

ment between simulated reductions in transpiration 

and those obtained from the heat images. Also compar-

ison of the simulation results of SWAMP with the re-

sults of the more sophisticated model SWATRE showed a 

good agreement. The conceptual approach of incorporat-

bng regional groundwater flow in SWAMP was verified 

and proved to be acceptable. 

One of the most important objectives of the study 

was to establish operational rules for manipulating 

weirs and inlet structures. The empirical approach to 

arrive at these rules is discussed in Chapter 7. In 

this approach the most desired surface water level at 

any time during the growing season is related with 

groundwater depth and water content of the root zone: 

the lower the groundwater table or the drier the root 

zone the higher the surface water level. During winter 

the surface water level is as low as possible. The  

timing of the transition from winter to summer level 

in spring and from summer to winter level in autumn 

is also coupled with groundwater depth and water con-

tent in the root zone. The actual coupling is estab-

lished by trial and error. 

Chapter 8 deals with the results of a sensitivi-

ty analysis of SWAMP. The most sensitive parameters 

are the soil physical properties, the hydraulic prop-

erties of the tertiary surface water system and the 

parameters for waterlogging damage during the grow-

ing season. 

Chapter 9 describes the possible effects of wa-

ter conservation and water supply for the entire stu-

dy area. To that end the transpiration of a potato 

crop during the 12 years period 1971-1982 has been 

simulated with SWAM?  for the situations of a fixed 

weir, water conservation and water supply. These re-

sults corrected for crop related and meteorological 

data, gross-net area, unevenness of soil surface, 

shape of the phreatic surface and expected changes 

in soil physical properties, yielded the net effects 

of water conservation and water supply on transpira-

tion. 

In Chapter 10 a number of other aspects of sur-

face water management such as location and number of 

piezometers needed to manipulate the surface water 

level, the influence of maintenance of small canals, 

the consequences of installation of pipe drainage on 

effects of surface water manipulation are discussed. 

Also the consequences of automatization and dimension-

ing of weirs and a number of secondary effects are 

dealt with. 

An economical analysis of the effects of surface 

water management given in Chapter 11 yields the inter-

nal rate of return of investments in plans for water 

conservation and water supply. By applying the invest-

ment steps approach a relationship between'internal 

rate of return of investments and increasing levels of 

water supply could,be determined for the area. With 

the same approach an optimal allocation of supply 

capacity within the region and the optimal size of 

sections was derived. Finally a demand function for 

water, valid for the study region was generated. 

An evaluation of the case study described in 

this report leads to the following conclusions: 

- the most difficult problem in the study was to de-

velop a conceptual modeling approach based on 

mathematical-physical principles that could lead 

to a manageable hydrological simulation model; 

- much effort was spent to find suitable parameters 

for the saturated groundwater system. Sensitivity 

analysis, however, showed that the influence of pa- 
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rameters pertaining to this subsystem on the final 

results is less than that of the parameters of the 

open water and the unsaturated zone; 

- assessing of the spatial pattern of drainage resis-

tances proved to be rather problematic, because of 

the limited accuracy of measured discharges and the 

determination of surface water levels and groundwa-

ter depths representative for a certain area. Better 

methods for the determination of drainage resistances 

are therefore urgently needed; 

- the weakest point in the modeling was the limited 

knowledge about parameters for waterlogging damage 

during the growing season. Mpre fundamental research 

is necessary; 

- theinal infrared images proved to be very useful in 

verifying the unsaturated part of SWAMP. This tech-

nique offers good possibilities for verifying models 

of the unsaturated zone; 

- by carrying out simulations for a sufficient number 

of soil physical - hydrological units the spatial 

variability of soil physical properties and drainage 

resistances could be taken into account in a satis-

factory way; 

- the operational rules derived from simulations with 

SWAMP are easily applicable in practice. The only 

prerequisites are measuring of groundwater depths 

and setting up a water balance of the root zone; 

- the unevenness of the soil surface turned out to be 

of utmost importance for the final effects of sur-

face water management. The procedure developed in 

this study to calculate the hydrological consequences 

of an uneven soil surface can be applied to other 

drainage and water management problems; 

- because of the sensitivity of the results for param-

eters for waterlogging damage a more restrictive 

surface water manipulation could be a better solu-

tion in practice. Such a strategy, however, reduces 

the effects of water conservation. This reduction, 

however, can almost be compensated when water 

supply is possible; 

- pipe drainage systems also used for sub-irrigation 

drastically increase the potential effects of sub-

irrigation. However, the risks of clogging of the 

drains due to sub-infiltration are not yet clear 

and as long as this is the case installation of pipe 

drainage for this purpose cannot be recommended; 

- water conservation in the area turned out to be 

economically very attractive; 

- in spite of relatively low average efficiency of wa-

ter supply for subsurface irrigation (some 10 or 

20%) the water supply plan for the area is econom-

ical feasible; 

- water supply for sub-irrigation is especially effec- 

tive in dry years. In such years the effects and 

efficiencies are about three times the average 

values. An important result of water supply there-

fore is that year to year variations in crop yields 

due to limited water availability are considerably 

reduced; 

- the efficiency of water supply for sprinkling ir-

rigation is (much) higher. However, the economical 

feasibility of it was not investigated because 

this was beyond the scope of the study; 

- the consequences of surface water management for 

nature conservation were not incorporated in this 

study, but because surface water manipulation can 

be an effective tool in manipulating groundwater 

levels, it offers good possibilities for nature 

conservation. 

With respect to the application of the results 

of the study to other regions one has to take into 

account that the study area is a special one in the 

way that it has a rather dense and over-dimensioned 

surface water system. However, the approach followed 

in the study can be applied to arrive at a better 

founded way of surface water manipulation in each 

region having a more or less regular surface water 

system with an average mutual distante of not more 

than say 400 m. In cases where the spacing between 

watercourses is greater one has to apply a more di-

mensional model to describe the groundwater flow from 

or to the watercourses. The approach can also be used 

to carry out feasibility studies on water conservation 

and water supply projects or to obtain correct design 

parameters. Applying the developed approach for the 

purpose of deriving demand functions for water, it 

can add to an improved water resources management 

at various decision levels. 
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SAMENVATTING EN CONCLUSIES 

Door toename van de bevolking en de groei van de 

economische activiteiten kan water een schaars goed 

worden, zelfs in een regenrijk land als Nederland. 

Dit probleem vraagt om een goed waterbeheer, niet al-

leen op nationaal en provinciaal bestuurlijk niveau, 

maar ook op dat van waterschappen en gebruikers. Van-

wege de verwevenheden tussen de verschillende niveaus 

kan toepassing van technieken ontwikkeld in de 'Systems 

Engineering' een goed uitgangspunt leveren am tot een 

goede oplossing van dit beheersvraagstuk te komen. De 

algemene principes van Systems Engineering en de toe-

passing van deze benadering op het oppervlaktewater-

beheer in Nederland worden in het kort beschreven in 

Hoofdstuk 2. Uit deze beschrijving volgt dat vooral 

op waterschapsniveau het waterbeheer nog steeds op een 

traditionele manier wordt uitgevoerd, hetgeen inhoudt 

dat het is gebaseerd op praktijkervaringen en vuistre-

gels. Door de nog steeds toenemende eisen van de land-

bouw, het sterk groeiende belang van de natuurbescher-

ming en de zich in verschillende gebieden uitbreidende 

grondwateronttrekkingen wordt het oppervlaktewaterbe-

heer ingewikkelder en is er behoefte ontstaan aan een 

meer fundamentele aanpak ervan. In het kader van het 

onderzoek van het Instituut voor Cultuurtechniek en Wa-

terhuishouding werd daarom besloten tot het uitvoeren 

van een studie van dit probleem. De uitkomsten van de-

ze studie, die werd uitgevoerd in nauwe samenwerking 
met het waterschap 'De Veenmarken' en de Landinrich-

tingsdienst van de provincie Drenthe, zijn in dit 

rapport beschreven. 

Het studiegebied met een oppervlakte van onge-

veer 8000 ha staat beschreven in Hoofdstuk 3. Het ge-

bied is deel van het veenkoloniale gebied op de grens 

van de provincies Groningen en Drenthe en beslaat 

circa eenderde van het totale gebied van het water-

schap 'De Veenmarken'. 

Uit de geohydrologische beschrijving volgt dat 

de basis van het grondwatersysteem wordt gevormd door 

kleilge afzettingen van tertiaire oorsprong op een 

diepte van circa 120 m beneden maaiveld. Boven deze 

basis vormt een circa 40 m dikke laag van overwegend 

grof zand het onderste watervoerende pakket. Geduren-

de het Cromerien interglaciale tijdperk werd boven 

op deze laag klei en veen afgezet. Tijdens de Saalien 

ijstijd werd een stuwwal, de Hondsrug, gevormd die nu 

de westelijke begrenzing van het gebied vormt. Het 

door smeltwater gevormde brede en diepe dal ten oosten 

van deze stuwwal werd later opgevuld met tamelijk grof 

zand. Deze circa 25 m dikke laag vormt het middelste 

watervoerende pakket. Gedurende de Weichselien ijstijd 

werd een ongeveer 15 m dik pakket dekzand afgezet dat 

kan worden aangemerkt als het boyenste of phreatische 

watervoerende pakket. Gedurende het Holoceen ontstond 

een uitgestrekt hoogveen ten oosten van de 'Hondsrug'. 

Vanaf het begin van de 17e eeuw werd dit veen op syste-

matische wijze ontgonnen waarbij een stelsel van grote 

en kleine kanalen (monden respectievelijk wijken) werd 

gegraven om de turf af te voeren. Bij het vervenen 

werd de bovenste 50 cm los veen (bolster) teruggestort. 

Na de vervening werd het gebied geschikt gemaakt voor 

de landbouw door de bovenste laag van de bolster te 

egaliseren en af te dekken met een dunne laag zand af-

komstig van de uitgegraven kanalen. Het aldus gecre-

eerde bodemprofiel was uitermate geschikt voor land-

bouwkundig gebruik vanwege een groot vochtleverend 

vermogen, een redelijk goede ontwatering en een goede 

ontsluiting vanwege de aanwezige kanalen en wijken. 

In het tekort aan chemische vruchtbaarheid werd aan-

vankelijk voorzien door het gebruik van stadsafval 

en later door kunstmest. 

Het gebruik als bouwland veroorzaakte een gelei-

delijke afname van de hoeveelheid veen zodat het maai-

veld daalde, het vochtleverend vermogen van de grond 

verminderde en de drainagesituatie verslechterde. Toen 

in het begin van de zestiger jaren een overgang plaats 

vond van vaartransport naar wegtransport konden de 

peilen in de kanalen worden verlaagd en worden afge-

stemd op de vanwege de mechanisatie toegenomen land-

bouwkundige eisen met betrekking tot de ontwatering. 

Ter verbetering van het vochtleverend vermogen alsmede 

van de verticale waterbeweging, die werd bemoeilijkt 

door lokaal aanwezige minder goed doorlatende lagen 

in het bodemprofiel, werd en wordt op grote schaal 

bodemverbetering toegepast, voornamelijk in de vorm 

van mengwoelen. 

Omstreeks 1977 ontwierp het waterschap 'De Veen-

marken' een nieuw waterbeheersplan waarin ook werd 

voorzien in wateraanvoer gedurende droge perioden. 

Om dit plan te kunnen realiseren werd een aantal be-

weegbare stuwen en inlaatwerken gebouwd. Uitgangspunt 

van het plan was am het open waterpeil gedurende, de 

winter zo laag mogelijk te houden en in het voorjaar 

het peil te verhogen om op die manier zo veel moge-

lijk water in het gebied vast te houden. Bovendien 
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zou door watertoevoer van buiten het gebied sub-in-

filtratie mogelijk worden. 

Het waterbeheersingssysteem voor het proefgebied 

staat beschreven in Hoofdstuk 3. De manier waarop het 

peilbeheer wordt uitgevoerd berust op praktijkerva-

ringen. Omdat de weersomstandigheden van jaar tot 

jaar sterk kunnen verschillen, varieert het meest 

gewenste peil eveneens vrij sterk. 

Een verantwoorde beslissing omtrent het meest 

gewenste peil kan worden gebaseerd op resultaten van 

veldproeven of op modelberekeningen. Het bepalen van 

effecten van het peilbeheer met veldproeven is niet 

alleen tijdrovend en duur, maar de uitkomsten zijn 

alleen geldig voor omstandigheden die tijdens de 

proefperiode zijn opgetreden, zodat deze proeven zich 

zouden moeten uitstrekken over een zeer lange tijds-

periode. Daarom werd de voorkeur gegeven aan het be-

rekenen van effecten van peilbeheer door middel van 

hydrologische modellen. Voor het proefgebied werd 

een op physisch-mathematische grondslagen gebaseerd 

model ontwikkeld. Theoretische achtergronden en gege-

vens die nodig zijn om het hydrologische systeem van 

het gebied te beschrijven worden beschreven in Hoofd-

stuk 4. Ten behoeve van de modellering werd het hydro-

logisch systeem in vier subsystemen opgedeeld: het 

atmosfeer-gewas systeem, de onverzadigde zone, het 

verzadigd grondwatersysteem en het oppervlaktewater-

stelsel. 

In Hoofdstuk 5, waarin de daadwerkelijke model-

lering staat beschreven, wordt speciale aandacht be-

steed aan de verschillende manieren van koppeling van 

de onderscheiden subsystemen. Het ontwikkelde simula-

tiemodel WAM" (Surface WAter Management Program) be-

vat alle subsystemen in een ééndimensionale vorm. Met 

dit model kunnen de effecten van open waterpeilen op 

grondwaterstanden en op de grootte van de gewasverdam-

ping worden berekend. De regionale grondwaterstroming 

is in rekening gebracht via de onderrandvoorwaarden 

van het onverzadigde subsysteem. Het ruimtelijke pa-

troon van deze stroming, die zich uit in kwel vanuit 

of wegzijging naar het middelste en diepe watervoeren-

de pakket, wordt apart berekend met het eindige ele-

mentenmodel voor verzadigde grondwaterstroming, 

FEMSATS. 

Calibratie en verificatie van zowel SWAMP als 

FEMSATS worden beschreven in Hoofdstuk 6. De calibra-

tie van parameters voor het verzadigd grondwater-

systeem had betrekking op drainageweerstanden en de 

weerstanden van de weerstandbiedende lagen tussen de 

watervoerende pakketten. Verificatie van FEMSATS was 

slechts beperkt mogelijk vanwege de onnauwkeurigheid 

van de beschikbare afvoergegevens. Een directe veri-

ficatie van het onverzadigde deel van SWAMP was niet  

mogelijk omdat gedurende de meetperiode (1978-1980) 

nauwelijks of geen reductie in verdamping optrad van-

'wegé de relatief natte weersomstandigheden. Met be-

hulp van warmtebeelden, opgenomen in 1982, konden 

echter de met het model berekende reducties in ge-

wasverdamping worden vergeleken met uit warmtebeel-

den afgeleide reducties. Daarbij bleek voor de meeste 

situaties een goede overeenstemming te bestaan tussen 

de met de beide methoden verkregen resultaten. Een 

vergelijking tussen de simulatieresultaten van SWAMP 

met die van het veel ingewikkelder model SWATRE gaf 

eveneens goede overeenkomsten te zien. 

Ook de conceptuele aanpak om de regionale stro-

ming in rekening te brengen in het model SWAMP werd 

geverifieerd en bleek acceptabel te zijn. 

Een van de belangrijkste doelstellingen van de 

studie was het opstellen van beheersregels voor stu-

wen en inlaatwerken. De empirische aanpak om deze 

regels te vinden is beschreven in Hoofdstuk 7. Hier-

bij wordt het meest gewenste open waterpeil tijdens 

het groeiseizoen gekoppeld aan grondwaterstand en 

aan vochtinhoud van de wortelzone. Hierbij geldt als 

algemene regel: hoe dieper de grondwaterstand of hoe 

droger de wortelzone des te hoger het oppervlaktewa-

terpeil. Voorts wordt gedurende de winter het peil 

zo laag mogelijk gehouden om de ontwateringsmogelijk-

heden zo goed mogelijk te benutten. Het tijdstip van 

overgang van winterpeil naar zomerpeil in het voor-

jaar en van zomerpeil naar winterpeil in de herfst 

is eveneens gekoppeld aan grondwaterstand en vocht-

inhoud van de wortelzone. De grenswaarden van grond-

waterstand en vochtinhoud waarbij veranderingen in 

het open waterpeil worden aangebracht, werden door 

middel van de 'trial and error'-methode verkregen. 

Hoofdstuk 8 behandelt de resultaten van de ge-

voeligheidsanalyse met SWAMP. Het meest gevoelig 

bleken daarbij de parameters voor de bodemfysische 

eigenschappen van de onverzadigde zone, voor de hy-

draulische eigenschappen van het wij kenstelsel en 

voor de wateroverlast gedurende het groeiseizoen. 

Hoofdstuk 9 beschrijft de mogelijke effecten 

van waterconservering en -aanvoer voor het gehele 

studiegebied. Daarvoor werd de gewasverdamping van 

een aardappelgewas gedurende de periode 1971-1982 

met SWAMP gesimuleerd voor drie verschillende alter-

natieven, namelijk situaties met vaste stuwen, wa-

terconservering en wateraanvoer. Om een betere be-

nadering van de zich in werkelijkheid voordoende 

omstandigheden te krijgen moeten de aldus berekende 

effecten worden gecorrigeerd voor de in werkelijk-

heid in het gebied geteelde gewassen, voor de meteo-

rologische gegevens gebruikt in de simulatie, voor 

bruto-netto oppervlakte, voor ongelijkheid van maai- 
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veldsligging, voor vorm van het phreatisch vlak en 

voor de in de naaste toekomst te verwachten verande-

ringen in bodemfysische eigenschappen. Na invoering 

van deze correcties worden de gemiddelde netto effec-

ten van waterconservering en -aanvoer op de gewasver-

damping verkregen. De verdampingswaarden zijn ten 

behoeve van de economische beschouwing gebruikt voor 

de berekening van de gewasproduktie. 

In Hoofdstuk 10 worden een aantal andere aspec-

ten van peilbeheer behandeld. Het betreft de situe-

ring en aantal in te richten referentiemeetpunten 

voor de grondwaterstand, de invloed van wijkonderhoud, 

de gevolgen van de aanleg van buisdrainage en de au- 

tomatisering en dimensionering van stuwen. Verder wor-

den een aantal zogenaamde secundaire effecten genoemd 

die verder in deze studie buiten beschouwing zijn ge-

bleven. 

Een economische analyse van de effecten van peil-

beheer wordt gegeven in Hoofdstuk 11. Daarbij werd 

de interne rentevoet van investeringen in plannen voor 

waterconservering en -aanvoer berekend. Door toepas-

sing van de investeringstrappenmethode kon een verband 

tussen de interne rentevoet van investeringen in uit-

breiding van wateraanvoer en de reeds aanwezige aan-

voercapaciteit naar het gebied worden afgeleid. Met 

dezelfde benadering werden een optimale verdeling van 

aanvoercapaciteit tussen verschillende deelgebieden 

en de optimale grootte van peilvakken verkregen. Ten-

slotte werd een vraagfunctie naar water, geldig voor 

het proefgebied, gegenereerd. 

Een evaluatie van de in dit rapport beschreven 

case studie leidt tot de volgende conclusies: 

- het moeilijkst op te lossen probleem was de ontwik-

keling van een conceptuele modelaanpak, gebaseerd 

op mathematisch-fysische beginselen, die kon leiden 

tot een hanteerbaar hydrologisch simulatiemodel; 

- veel moeite werd besteed om de eigenschappen van 

het verzadigd grondwatersysteem vast te stellen. 

Uit de uitgevoerde gevoeligheidsanalyse kon echter 

worden afgeleid dat de invloed van deze eigenschap-

pen op het uiteindelijke resultaat minder is dan de 

invloed van eigenschappen van het oppervlaktewater-

stelsel en van de onverzadigde zone; 

- het vaststellen van de ruimtelijke variabiliteit 

van drainageweerstanden bleek tamelijk problema-

tisch te zijn vanwege de beperkte nauwkeurigheid 

van gemeten afvoeren en de vaststelling van open 

waterpeilen en grondwaterstanden die representa-

tief zijn voor een zeker gebied. Goede methoden 

voor de vaststelling van drainageweerstanden zijn 

daarom dringend gewenst; 

- het zwakste punt in het modelleringsproces is de be- 

perkte kennis omtrent parameters waarmee de gevol-

gen van wateroverlast op de gewasverdamping in re-

kening worden gebracht. Meer fundamenteel onderzoek 

hieromtrent is dan ook gewenst; 

- door remote sensing verkregen warmtebeelden bleken 

zeer geschikt te zijn am het onverzadigde deel van 

5+1MP te verifiëren. Deze techniek opent goede per-

spectieven om meer algemeen te worden gebruikt bij 

verificatie van modellen voor de onverzadigde zone. 

Dat in plaats van de tot nu toe meestal voor dit 

doel gebruikte grondwaterstanden; 

- door het uitvoeren van berekeningen voor een groot 

aantal bodemfysisch-hydrologische eenheden kan met 

de ruimtelijke variabiliteit van bodemfysische ei-

genschappen, drainageweerstanden en intensiteit van 

kwel en wegzijging op bevredigende wijze rekening 

worden gehouden; 

- de beheersregels afgeleid uit berekeningen met SWAMP 

zijn gemakkelijk toepasbaar in de praktijk. De enige 

voorwaarden voor deze toepassing zijn het hebben van 

informatie over de zich voordoende grondwaterstanden 

en het beschikbaar hebben van een waterbalans voor 

de wortelzone. Eventueel kan het laatste gegeven 

worden vervangen door directe meting van de vocht-

inhoud van de wortelzone; 

- de ongelijkheid van maaiveldsligging bleek erg be-

langrijk voor de uiteindelijke effecten van peilbe-

heer. De in deze studie Ontwikkelde procedure om de 

invloed hiervan te bepalen kan worden toegepast op 

andere waterbeheersproblemen; 

- vanwege de gevoeligheid van de resultaten voor de 

parameters voor wateroverlast kan een voorzichtiger 

beheer de voorkeur verdienen. Zo'n beheer beperkt 

echter de effecten van waterconservering. In het ge-

val wateraanvoer mogelijk is, kan dit verlies vrij-

wel volledig worden opgeheven; 

- aanleg van buisdrainage, die tevens kan worden ge-

bruikt voor infiltratie, doet de mogelijke effecten 

van peilbeheer sterk toenemen. De risico's van 

vroegtijdige verstopping van de drains zijn echter 

nog niet goed bekend. Daarom moet toepassing van 

buisdrainage voor infiltratie met de nodige voor-

zorg gebeuren; 

- waterconservering in het gebied bleek economisch 

zeer aantrekkelijk te zijn; 

- ondanks een vrij lage gemiddelde efficiëntie van 

wateraanvoer voor infiltratie (10 á 20%) blijkt wa-

teraanvoer voor het proefgebied redelijk rendabel; 

- wateraanvoer voor sub-infiltratie is met name in dro-

ge jaren effectief. In dergelijke jaren zijn de effec-

ten en efficiënties ongeveer drie maal zo hoog als 

gemiddeld. Een belangrijk effect van wateraanvoer 

is daarom dat de van jaar tot jaar optredende reduc- 
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ties in gewasopbrengsten ten gevolge van droogte 

aanzienlijk worden verminderd; 

- de efficiëntie van wateraanvoer voor beregening is 

(veel) hoger. De hydrologische en economische effec-

ten van beregening zijn echter buiten de studie ge-

houden; 

- de gevolgen van peilbeheer op het hydrologisch 

regime van natuurterreinen is niet onderzocht, maar 

omdat peilbeheer zeer effectief kan zijn bij het 

reguleren van de grondwaterstanden, heeft het goede 

mogelijkheden voor natuurbeheer. 

De in de studie ontwikkelde methoden om te komen 

tot een beter gefundeerd waterbeheer kan worden toe-

gepast op andere gebieden met een min of meer regel-

matig oppervlaktewaterstelsel met een onderlinge af-

stand tussen de beheersbare waterlopen van niet meer 

dan ongeveer 400 m. In gebieden waarin deze afstand 

groter is, dient de grondwaterstroming naar of vanuit 

het oppervlaktewaterstelsel te worden beschreven met 

meer-dimensionale modellen. 

De ontwikkelde methoden kunnen ook worden ge-

bruikt om de economische haalbaarheid van waterconser-

verings- en aanvoerplannen vooraf te bepalen of om 

bepaalde ontwerperiteria vast te stellen. 

Bij toepassing van de methoden om per gebied 

de vraagfuncties van water te genereren kan deze een 

bijdrage leveren om te komen tot een beter waterbeheer 

op verscheidene beslissingsniveaus. 
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LIST OF SYMBOLS 

Symbol 

A 

A' 

As 
Aw 

 a 

a 
g 

as 

at 

aw 
al 

 al , ..., a s  

B 

Bw 
b 

b 1  
C 

Cd 
Cd ' 

CM 
Co 
Ct 

 Cv 
c 

cd 
c l ,c2  

D 

E 

E. 1 
Eo 

p 
Es 
E s,p 
Et  

Et , 

E 
 ea 

es 
ew 
F 

F' 

f. 1 
fp 
fr 

Definition 	 Units 	 Dimension 

proportionality constant in Eq. (11.1) 	 kg.ha-l.mm-l.mbar-1 	L-2•t2 

-l .mm-1 .mbar- 1  proportionality constant in Eq. (11.2) 	 kg.ha 	 L-2 .t2 

size of sections 	 ha 	 L2 

wetted area of a watercourse 	 m2 	 L2 

annuity 	 1 

fractional area covered by the ground surface 	 1 

fractional area covered by the secondary surface 

water system 	 1 

fractional area covered by the tertiary surface 

water system 	 1 	 - 

specific width of weir 	 m-ha-1 	 L 1 

parameter in linear regression equation 	 1 

values for Wr/Wrs  in aT  = f(Wr/Wrs) (Fig. 5.5) 	1 	 - 

benefits 	 Dfl 	 - 

wetted perimeter of a watercourse 

effective width of a weir 

parameter in linear regression equation 	 1 	 - 

costs 	 Dfl 

discharge coefficient 	 1 

discharge coefficient in Eq. (4.33) 	 m2-n.d-1 	 L2-n •t -1 

coefficient in Eq. (5.10) 	 10-6 m 1 .d2 	 L 1 .t2 

operational costs 	 Dfl 

discharge coefficient in Eqs. (5.16) through (5.19) 	103 m-3 .d 1 	 L

- 3

.t-1 

approach velocity coefficient 	 1 

resistance for vertical flow 	 d 

discharge coefficient in Eq. (5.12) 	 10 6 m1-n •d-1 	L1-n .t-1 

constants in Eqs. (4.2) and (4.3) 	 1 

thickness of an aquifer 	 m 	 L 

evapotranspiration rate 	 kg•m-2 •s -1 (nm.d-1 ) 	WI, 2 -t. -1 

evaporation rate of intercepted precipitation 	 kg.m-2 .s -1 (Inm•d-1 ) 	M.L-2 .t-1 

open water evaporation rate 	 kg•m-2 •s -1 (nm•d-1 ) 	M.L 2 .t-1 

potential evapotranspiration rate kg•m7 2 •s-1  (mn•d- 1 ) 	M.L:2 .t ill 

soil evaporation rate 	 kg.m-2 .s-1 (nm•d-1 ) 	M•L 

2 

.t. 

potential soil evaporation rate 	 kg•m-2 •s-1 (mm•d" 1 ) 	M.L-2 .t-1 

transpiration rate 	 kg.m-2 .s-1 (mm-d-1 ) 	M.L-2 .t -1 

potential transpiration rate 	 kg•m-2 •s-1 (mn•d-1 ) 	M.L-2 .t-1 
_ 2  

evaporation rate of a wet surface 	 ka•m-2 •s -1  (mm•d- 1 ) 	WI, .t_
1 

 

water vapour pressure at screen height 	 mbar 	 M.L 1 -t.-2 

saturation water vapour pressure 	 mbar 	 M.L 1 .t-2 

efficiency of water supply 	 1 	 - 

measured variable 	 - 

simulated variable 	 - 
- infiltration rate 	 mm•d 1 	 L•t-1  
- maximum possible infiltration rate 	 mm.d 1 	 L.t-1  
- surface runoff 	 mm.d 1 	 L.t-1  
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Symbol 	Definition 	 Units 	 Dimension 

m  - 
G 	 soil heat flux density 	 n.m 2 	 M•t-3 

2 
g 	 acceleration due to gravity (g = 9.813) 	 m•s 	 M•t-2 

H sensible heat flux density 	 W•m-2 	 M•t-3 

He 	 energy line 

ha 	 air entry pressure head 

hf 	 height of phreatic surface above datum 

h* 	 depth of phreatic surface below soil surface 

hf m 	height of the phreatic surface midway between the 

watercourses 

h1 	 hydraulic head of lower aquifer 

hm 	 hydraulic head of midfile aquifer 

ho 	 open water level 

h* c 	depth of bottom of watercourse below soil surface 

h* m 	target level of surface water relative to soil surface m 

h* s 	depth below soil surface of surface water in 

secondary system 

h* t 	depth below soil surface of surface water in 

tertiary system 

h * w 	water depth upstream of weir below soil surface 

h
P 	

pressure head 

hs 	 height of soil surface above datum 

hy*J. 	 depth of weir crest below soil surface 

h 1 	 upstream head above crest 

investments 	 Dfl 

internal rate of return 	 1 

K 	 hydraulic conductivity 	 m.d-1 	 L•t- -1  

KM 	 conveyance factor of Manning m 1/3 s -1  L1/3 t-1 

Ks 	 saturated hydraulic conductivity 	 m•d-1 	 L-t 1  

Kxyz 	hydraulic conductivity in x,y,z direction 	 L•t-1  

L distance between watercourses 

N lifetime of project 	 a 

n exponent in Eqs. (4.33) and (5.12) 	 1 	 - 
1/3 nM  roughness coefficient of Manning 	 m 	-s-1 	 L-1/3 .t -1 

ns 	 exponent in Bloemen formula (Eq. 4.19) 	 1 

P 	 gross precipitation 	 mm.d 1 	 L.t

- 

 -1 

Pe 	 pressure energy 	 mbar 	 M.L-1 .t-2 

Pn 	 net precipitation (gross precipitation - interception) mm•d -1 	 L-t 1  

Pa 	 atmospheric pressure (pa  = 1013) 	 mbar 	 M.L 1 .t -2 

Pl> 	P4 values for hp  in as  = f(hp) 

Q 	 discharge m 3.s -1  L3 •t-1 

Q* 	 net radiation flux density 	 W-m -2 	 M•t-3  

q extraction rate of water 	 m-d 1 	 L•t-1  

q' 	 discharge per unit width of weir m 2-s -1  L2 -t 1 

R 	 hydraulic radius 

Re 	 efficiency factor in Eq. (6.1) 	 1 

RN 	 rest value 	 Dfl 

factor for hysteresis in Eq. (4.19) 	 1 	 - 
- ra 	 aerodynamic resistance 	 s•m 1 	 L 1 -t  
- rc 	 canopy resistance to vapour transport 	 s•m 1 	 L 1 .t  

S 	 sink term/root water uptake 	 d1 	 t-1  

Sa 	 storage coefficient of aquifer 	 1 

Sc 	 fraction of soil covered by crops 	 1 
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Symbol 	Definition 	 Units 	 Dimension 

Se 	 gradient in total energy 	 1 	 - 

Sf 	 Toss of head per unit length caused by friction 

resistance 	 1 	 - 

S 	maximum possible root water uptake 	 d 1 	 t-1 

So 	 slope of bottom of a watercourse 	 1 	 - 

Ss 	 specific storativity 	 m-1 	 L1 

s 	 slope of saturation vapour pressure curve 	 mbar-K-1 	 M-1, 1 -t-2 .e) -1 

s i 	 capacity of inlet structure per unit area 	 mm-d-1 	 L-t 1 

sm 	 supply capacity per unit area 	 mm-d-1 	 L•t-1  

sp 	 supply capacity of primary system per unit area 	mm-d-1 	 1.-t-1  

sr 	 supply capacity 	 m3 -s-1 	 L3 - t.-1 

Ta 	 temperature of the air at screen height 	 K 	 e 

Tc 	 average yearly transpiration simulated for the 

situation with water conservation 	 mm-a-1 	 L-t. 1 

Ts 	 temperature at the water surface 	 K 	 0 

Ts 	 average yearly transpiration simulated for the 

situation with water supply 	 mm-a-1 	 L-t-1  

T0 	 average yearly transpiration simulated for the 

vr 	 flux through lower boundary of root zone 	 mm-cl-1 	 L•t.-1  

v 0.75 

0.75, 1.50 and 2.50 mm-d 1 , respectively 

average yearly amount of water supply with sin  
1.50  mm -a-1 	 L•t 1 

2.50 
W
r 	 water storage in the root zone 	 mm 	 L 

Wr d 	water deficit in root zone (Eq. 7.1) 	 mm 	 L 

Wr e 	water storage in the root zone at equilibrium 	 mm 	 L 

Wr S 	 water storage in the root zone at complete saturation 	mm 	 L 

Ws 	 water storage in transition zone 	 mm 	 L 

wi 	 specific resistance 	 d 	 L 

Y 	 crop yield, dry matter production of a crop 	 kg-ha-1 (d-1 ) 	 Is4-1, 2 (t-1 ) 

Yh 	 actual harvestable crop yield 	 kg•ha-1 	 1,4-1, 2 

Y 	 maximum crop yield 	 kg•ha-1 	 14-1, 2  
ma.x 
y 	 water depth in watercourse 	 m 	 L 

Yc 	 critical water depth 	 m 	 L 

z 	 vertical coordinate 	 m 	 L 

zb 	 height of lower boundary of unsaturated model 	 m 	 L 

zo 	 soil surface 	 m 	 L 

zr 	 rooting depth 	 m 	 L 

zero situation (weir with fixed crest) 	 mm-a 1 	 L-t 1  

t time 	 d 

t' 	 time after dry period started (Eq. 5.24) 	 d 

✓ apparent velocity 	 mm-d-1 	 L-t 1 

d-1 	 L-t 1- va 	 flux to aquifer 	 mm  

vb 	 flux through lower boundary of unsaturated flow model 

(below lowest possible groundwater table) 	 mm-d-1 	 L• t 1  

vd 	 flux to watercourses 	 mm-d-1 	 L-t 1 

vf 	 flux through phreatic surface 	 mm-d-1 	 L• t 1  

vfl 	fluid velocity 	 m•s-1 	 L-t 1  

supply rate of primary system 	 mm•d-1 	 L• t 1  
o

• 

,p 
vos 	flux from secondary to tertiary surface water system 	mm-d-1 	 L-t-1  

vo uw  flux over a weir mm -d-1 	 L•t.-1  
vpeak 	daily peak discharge 	 mm-d-1 	 L•t-1  
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Syábol 	Definition 	 Units 	 Dimension 

a 	 reaction factor 	 d-1 	 t-1 

aS 	 reduction coefficient for S 	(Eq. 8.5) 	 1 	 - max 

aT 	 reduction coefficient for Et,p (Eq. 5.25) 	 1 	 - 

av 	 coefficient depending on velocity distribution in 

Eq. (4.26) 	 1 	 - 

aw 	 slope of weir 	 rad 	 - 

Y 	 psychrometer constant (y = 0.67) mbar.K 1 	 M.L-1 .t -2 .8
-1 

Ae 	 saturation vapour pressure deficit 	 mbar 	 M•L 1 .t. -2 

Ahe 	loss of head due to entrance resistance 	 m 	 L 

Ahh 	loss of head due to horizontal resistance 	 m 	 L 

Aho 	backwater effect 	 m 	 L 

Ahr 	loss of head due to radial resistance 	 m 	 L 

Ahv 	loss of head due to vertical resistance 	 m 	 L 

ATc 	effect of water conservation on transpiration 

compared with zero situation 	 mm.a. -1 	 L•t-1 

ATs 	effect of water supply on transpiration compared 

with conservation 	 mm.a. -1 	 L•t.-1  

AT 0.75 	effect of water supply of 0.75, 1.50 and 2.50 

AT1.50 	mm.d-1 , respectively, on transpiration, compared 

AT 2.50 	with conservation 	 mm•a-1  L•t -1  

At 	 length of time step 	 d 	 t 

c 	 ratio between molecular weight of water vapour 

and dry air (c = 0.622) 	 1 	 - 

6 	 soil water content 	 1 	 - 

6a 
	 air content of soil 	 1 	 - 

6s 
	 saturated soil water content 	 1 	 - 

e
w 	 weir notch angle 	 rad 	 - 

nf 	 coefficient for the shape of the phreatic surface 	1 	 - 

a 	 specific latent heat of vaporization (X = 2.4518 x 10 6) 	J.kg -1 	 L2 .t. -2 

a s 	 soil dependent parameter in Eg. (5.24) 	 1 	 - 

u 	 phreatic storage coefficient 	 1 	 - 

us 	 storage coefficient of transition zone 	 1 

Ps,e 	storage coefficient of transition zone at equilibrium 	1 	 - 

Pa density of moist air 	 kg.m-3 M•L-3 

p s 	 density of soil 	 kg.m -3 	 M.L -3 

Pw 	 density of water 	 kg.m 3 M.L-3 

T 	 time constant 	 d 	 t 
T 	 drainage resistance 	 d 	 t 
Te 	 entrance resistance 	 d 	 t 
Th 	 horizontal resistance 	 d 	 t 
Tr 	 radial resistance 	 d 	 -t 
Tv 	 vertical resistance 	 d 	 t 
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APPENDIX: MODEL APPROACH AND OPERATIONAL RULES 
APPLIED 

The hydrological system is divided into four sub-

systems: the crop - atmosphere system, the unsaturat-

ed zone, the groundwater system and the open water 

system interrelated through mass flows. The construct-

ed model contains these sub-systems and their inter-

actions. For practical use simplifications have been 

applied. 

In the transient one-dimensional model, of which 

the computer code is called SWAMP, all sub-systems 

are taken into account via the fractional area. Sim-

ulations are carried out for points representative 

for a certain area, in our case a section (an area 

with the same open water level). 

The model needs the following data: 

A. BCUNDARY CONDITIONS 

- the potential transpiration calculated with SWATRE; 

- the actual soil evaporation, also calculated with 

SWATRE (soil evaporation does not change with 

changing water management); 

- the supply capacity per unit area. 

B. SYSTEM PARAMETERS 

1) Soil physical unit related data consisting of an 

input file containing: 

- equilibrium water storage of the root zone for a 

number of groundwater depths; 

- capillary rise as a function of groundwater 

depth and of water storage of the root zone; 

- storage coefficient of the transition zone below 

the root zone as a function of groundwater depth 

and of capillary flux; 

- rooting depth; 

- parameters for reduction in transpiration (Fig. 

5.5). 

2) Groundwater flow related data: 

- the regional groundwater flow component specified 

as va  = f(14,h:)), calculated as the average of 

all nodal points of a section used in FFMSATS; 

- drainage resistance and shape factor determining 

the local groundwater flow v d . 

3) Open water related data: 

- distance between 'wijken'; 

- geometry parameters for calculating fractional 

areas and backwater effects; 

- roughness parameters; 

- weir proporties i.e. specific width of weir, 

adjustment range and speed of weir crest. 

C. WATER MANAGEMENT DATA 

Type of surface water management, to be speci-

fied with a code: 

0 = surface water level as input (used for verifica-

tion purposes) 

1 = weir with a fixed crest (strategy I). Level must 

be specified as input 

2 = water conservation i.e. target level is 

determined by soil water conditions. Target 

levels are divided into a number of steps ranging 

from winter level (phase 0) to winter level +0.70 

m (phase 7) (strategy II) 

3 = conservation plus water supply with capacity 

0.75 mm. c1-1 (strategy III) 

4 = ibid 3; capacity 1.50 mm.d. 1 (strategy IV) 
1 5 = ibid 3; capacity 2.50 mm•ol 	(strategy V) 

For simulating the effects of water conservation 

and water supply the operational roles described in 

run 7 (Table 7.4) are used. They comprise (see also 

Fig. 7.2): 

- from t = 0 to t = t 1 (20 February) the target level 

is 1.40 m unless the groundwater depth is below 

1.00 m. In that case it becomes 1.20 m; 

- from t 1  on the target level is only raised if it is 

allowed by the groundwater depth. The groundwater 

depths allowing a certain level are given in Table 

A.1. For soil physical unit VIII (sand) the target 

levels are taken 0.20 m higher. 
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Table A.1. Demands for groundwater depths to allow 	used. The computing time is approximately 50 sec cpu- 
different target levels 	 time for simulating one year on a VAX-11/750. 

Groundwater depth 
	

Target level 	Phase 

(m below 
	

(m below 
soil surface) 
	

soil surface) 

>0.85 1.30 1 
>0.90 1.20 2 
>0.95 1.10 3 
>1.00 1.00 4 
>1.05 0.90 5 
>1.05 0.80 6 
>1.05 0.70 7 

For the higher phases (5 through 7) an extra 

safety has been built in in the foxen of a demand 

for the water deficit in the root zone (Table A.2). 

Table A.2. Demands for water deficits in the root 
zone to allow different target levels 

Water deficit 	Target level 	Phase 

(mm) 	 (m below 
soil surface) 

>10 
	

0.90 
	

5 
>20 
	

0.80,0.90 
	

6,7 

- the earliest time at which water supply is allowed 

is t 2 = 120 (30 April); 

- the earliest time at which phases 6 and 7 are allow-

ed is t3  = 150 (29 Nay); 

- the latest time t 4 at which the target level should 

be lowered is dependable on the water deficit in 

the root zone according to the nules given in Table 

A.3. 

Table A.3. Dependency of t 4  on the water deficit in 
the root zone, Wr d 

Water deficit 
in root zone, Wr,d 

(mm) 

t 4 

(day nr.) 

	

<10 	 220 (8 August) 
20 - W 

	

10-20 	 250 	r  
10 

,d 	30  

	

>20 	 250 (7 September) 

- the water supply rate depends on the needs but 

never can exceed the supply capacity; 

- target levels are adjusted every week, but cannot 

exceed 0.20 m in order to prevent too high flow 

velocities in the watercourses. 

SWAMP uses time steps of 1 day, except for the 

open water system where time steps of 0.01 day are 
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