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SCOPE AND GIST OF THIS THESIS 

In 1985, dr ir O.D.L. Strack, professor at the University of Minnesota, 
introduced his computer code called "single layer analytic element model' 
(SLAEM) in the Netherlands as part of a course on groundwater modeling. 
Ever since that moment, the analytic element "technique" - as preferred 
by the author, or "method" instead of "model" for use in the abbreviation 
"AEM - has been used by several interested users in the Netherlands, one 
of them being the author. The technique showed results of a considerable 
different nature from those of any existing technique and was used first in 
the small systems of infiltration ditches and abstraction wells built by 
drinking water supply companies in the western coastal dune areas of the 
Netherlands. In the United States of America the technique was mostly 
applied in situations concerning one aquifer with infiltration, wells and 
rivers and often a "uniform flow field was used. 

In 1987, the author started the development of the NAGROM (NAtionaal 
GROundwater Model) as one of the instruments for integrated water 
management of Rijkswaterstaat. Because a GIS (geographic information 
system) in geohydrology was not available at that moment, it was 
expected that the development of large models with one of the established 
techniques (finite element technique or finite difference technique) would 
become quite cumbersome. The solution for this problem was found in the 
direction of coupling of models. The principle of superposition which forms 
the basis of Strack's AEM principally enables coupling and refining of 
models. It was expected that using this technique large supra-regional 
models could be built by combining smaller, regional models. By combining 
the supra-regional models, the entire nation might be covered ultimately 
by one model. 

However in 1987, only rather simple models of a single aquifer had been 
built with the AEM. Actually, a modeling approach for building multi-
aquifer models or for the use of nested inhomogeneities did not exist. Also, 
basic items in groundwater modeling such as anisotropy and transient 
behaviour were not available at that time. Moreover, the theory on 
accounting for density differences, which is one of the most difficult items 
in groundwater flow was not expected to be included at all, because its 
three-dimensional behaviour can not be handled by a strictly two-
dimensional technique. During the development of the NAGROM in the 
period 1987-1994, the AEM has grown out in such a way that it can 
handle these items. The modeling approach developed by the author for 
NAGROM is unique, even in the field of analytic element modeling. The 
development of NAG ROM has triggered most of the work in this thesis. 

During the development of NAGROM, the modeling approach has been 
expanded. It appeared that the regional models of NAG ROM could be 
used as a framework for local models, because of the possibility to refine 
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parts in a model without changing the remaining model. In various 
modeling sessions, the existence of the boundary zone around the domain 
of interest appeared to be the main advantage of using NAGROM. 
Other reasons to choose the AEM for the modeling of large domains are 
the absence of numerical dispersion in the computation of the velocity as 
well as the analytically determined and therefore exact water balance 
within any volume. 

The main line of the modeling approach of large domains with analytic 
elements has been developed for NAGROM and was based on practical 
experiences (De Lange, 1991). The models resulting from this approach are 
described in the reports on NAGROM (De Lange and Van der Meij, 1994). 
This thesis is largely complementary to these two references because it 
concerns the theoretical background of the modeling approach. In this 
modeling approach, three stages can be distinguished: 
1 - the choice of the type of analytic element and the values of its 

parameters which depend on the simulated geohydrologic feature, 
2 - the combination of analytic elements in single-aquifer models as 

well as in multi-aquifer models and 
3 - the development of models covering large domains (5,000 to 

10,000 km 2 ) including many and detailed surface water systems. 
The main parts of the first and the last stage have been reported in a RIZA 
note (De Lange, 1991) and are just mentioned in this thesis. The theory 
behind the second stage forms the first of the two main subjects of this 
thesis. 

Analytic elements interact in a way that is different from that between 
elements in any other modeling technique. From the authors experience it 
is concluded that this interaction should be well understood when building 
a model, particularly a model covering a large domain. Single analytic 
elements of the source or sink type generate flow in the entire infinite 
domain. Other analytic elements (generally of dipole type) can only react 
to flow not generated by themselves. The analysis of the behaviour of 
single elements has led to several basic rules for modeling. The analysis of 
the combination of two elements of equal or different type resulted in 
several main rules for combinations. Also, some main rules have been 
determined for multi-aquifer modeling. The combination of different 
element types determines the behaviour of the model. 

The second main subject in this thesis concerns the interaction between 
many surface waters and the groundwater in regional aquifers as it occurs 
in a country as rich of surface waters and drainage systems as the 
Netherlands. Dutch hydrologists have used for years several analytically 
derived expressions to model this interaction by a Cauchy boundary 
condition in areal elements. Generally, it is assumed that the two solutions 
most used lead to comparable results. In this thesis, it is shown that the 
differences between these solutions can not be neglected in many 
situations existing in practice. An extensive analysis has led to the decision 
of which of these solutions is to be preferred. Because the solution to be 
preferred is not simple to understand and to be used, a new analytic 
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solution is derived by the author, which is simple to understand and gives 
results that are strongly similar to those of the preferred existing solution. 
Because of its simplicity, the new solution appears to be more suitable for 
use in NAGROM than the existing ones. In all analytic solutions leading to 
a Cauchy boundary condition, the representative distance between the 
surface waters is a very important parameter. A theoretical basis is 
presented for a practical approach to derive this parameter in an area with 
arbitrary situated surface waters. 

NAGROM is one of the instruments of Rijkswaterstaat for integrated water 
management in the Netherlands (Pulles, 1985). Its results have to be 
comparable over the entire country. NAG ROM consists of connectable 
models that are and have been developed by different modellers at 
different times and places. The comparability of these different models is 
enabled by defining an input-based model accuracy (instead of relying on 
the output accuracy only). Each NAGROM model is defined at a certain 
scale. A definition of modeling scales is presented in this thesis. The model 
scale is related to the size of the domain of interest of the model. By 
modeling a standard amount of geohydrologic features in the domain of 
interest the degree of detail in the model can be defined. 

An introduction to large scale modeling is given in chapter 2. The AEM is 
described in the form of a hydrologist's view in chapter 3 and concerns the 
analytic elements included in Strack's multi-aquifer computer code of 
1992. The main elements that became available in 1993 and later are 
summarized in chapter 4. Chapters 3 and 4 are largely based on the 
existing theory of Strack (e.g. Strack, 1989a) and express some of the 
authors experiences with the technique. A main part of chapter 5 concerns 
the analysis of the behaviour of each type of analytic element described in 
chapter 3 individually and of the combinations of each one with one of the 
other types of elements. Chapter 5 concludes with a description of a 
number of combinations of more than two analytic elements. The 
modeling of the interaction between surface waters and groundwater by 
using a Cauchy boundary condition is analyzed in chapter 6. Chapter 7 
describes a theoretical basis for the determination of the average distance 
between arbitrary situated surface waters for use in the Cauchy boundary 
condition. In chapter 8, it is illustrated how the theory of chapters 5, 6 and 
7 has been used in NAGROM. Also, several aspects of the modeling of 
large domains are discussed, which are complementary to the description 
of the modeling approach of NAGROM (De Lange, 1991) and to the 
description of the NAGROM models (De Lange and Van der Meij, 1994). 
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2 INTRODUCTORY REMARKS TO THE MODELING 
OF LARGE DOMAINS WITH ANALYTIC ELEMENTS 

2.0 Summary 

A model of a large domain is generally developed for water management 
purposes and is used for scenarios concerning different aspects of 
groundwater. The idea of modeling of large domains is described regardless 
of the used modeling technique. Several aspects of modeling of large 
domains are discussed. The background of the model of the Netherlands is 
summarized and this model is put in the perspective of other models of 
large domains. Some aspects of the analytic element technique AEM are 
described with regard to modeling of large domains. 

2.1 	Modeling of large domains for national water management 

Regardless of the used modeling technique, the size of a large model for 
water management purposes is tens to hundreds of times larger than the 
modeling domain in the case of a common model for a case study. Models 
of large domains cover areas in the range of thousands of km 2 , whereas in 
common models the domains are generally in the range of tens to 
hundreds km 2  or smaller. The modeling domain is the area of interest in 
the model, which excludes the zone that forms the model boundary. 
Actually in terms of results, this boundary zone should not be considered 
as a part of the model. 

In a model of a large domain (a large model), the coherence between the 
geohydrology of different regions becomes clear. For instance, large models 
include the regional water divides, rivers or faults which are often used as 
boundaries of common models. A large model accounts for changes in a 
water divide that occur due to changes in the model and for the 
groundwater flow that may cross a river or fault. A large model often 
covers areas for which the interests have been small or negligible, which 
may be the cause of a lack of data and of the absence of comparative 
studies. 

A large model becomes also complicated due to the large amount of 
geohydrologic features (surface waters, separating layers, aquifer 
inhomogeneities, wells, etc., see section 3.1) to be included. The 
interactions between so many features are hard to understand and the 
model calibration may become cumbersome. A large model is preferably 
developed in parts of the size of common regional models, which are 
coupled afterwards. The coupling of models is a particular advantage of 
the AEM (section 2.4). 

In general, models covering large domains are built for water management 
purposes. A model for (national) water management is not used for only 
one type of question and one situation such as the transport in 

17 



groundwater of a pollutant coming from a waste dump, but it should be 
applicable for many types of questions such as the effect of changes in 
vegetation (crops, forest) translated in terms of groundwater recharge on 
the flux in natural brooks, the effects of infiltration wells on the distribution 
of chloride in the groundwater, the effect of intensification of the 
agricultural drainage systems on the seepage in a wetland, etc. So, a model 
of a large domain for water management purposes may be used to 
compare the effects of different measures that occur in different places and 
originate from different reasons. These effects may be expressed in terms 
of different quantities (head, flux, travel time, concentration, mass load, 
size of affected area, etc.). 

In a model for national water management, the results may be less detailed 
than needed for a particular question at local scale. The effects of the 
relatively coarse modeling on the results should be known and be 
considered in the evaluation of the results. Application of a large model at 
a more detailed level requires refinement and addition of information. It 
appears, that in the Netherlands the questions for national water 
management tend to require a more and more refined description of the 
groundwater flow at certain places (e.g. around natural areas which are 
relatively small). The existing schematization of NAGROM can easily be 
refined, because the analytic element technique is used. 

2.2 	The model of the Netherlands 

Since the late 1970's, the Ministry of Transportation and Public Works has 
carried out water management studies at the national level in the 
Netherlands by using the set of instruments (computer codes) of PAWN 
(= Policy Analysis for Water management in the Netherlands, PulIes 1985). 
Already in the first stage of PAWN, the groundwater flow in the 
unsaturated zone was included in a model for the water demand of 
agricultural crops but the groundwater flow in the saturated zone was 
actually left out completely (Rand Corporation, 1982). For the integrated 
water management studies that started in the late 1980's, the satured 
groundwater flow had to be included in the set of PAWN instruments. This 
has led to the development of NAGROM (De Lange, 1991). 

Because NAGROM is developed to be one of the instruments for national 
water management of PAWN, it is connected with the (renewed version of 
the) soil water model for the unsaturated zone MOZART (Arnold, 1995). 
The latter model simulates the soil water flow in the unsaturated zone by 
computing successive steady states (changes in time neglecting storage 
effects) and transient (including storage effects) conditions. The connection 
between MOZART and NAGROM (MONA) is being developed since 1994 
and is based on the Cauchy boundary condition derived in chapter 6 that 
describes the interaction between one or more surface waters and the 
groundwater in an aquifer. In NAGROM the wet-season-average vertical 
flux to or from the unsaturated zone is computed using this boundary 
condition. This flux is assumed to be a first order approximation of the 
wet-season-average flux under successive steady states or transient 
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conditions as they are computed by the model for the unsaturated zone. 
Both models use the same Cauchy boundary condition with equal 
parameter values. MONA is still under development (1995). 

NAGROM consists of about ten models of large domains (supra-regions), 
that can be coupled along the borders between any two models and that 
may ultimately form one nation-wide model (De Lange, 1991). NAGROM 
is the first groundwater model ever that covers more than 40,000 km 2  of 
mainly intensively drained and deltaic areas. Even the supra-regional 
models of NAGROM cover large domains (2,000 to 10,000 km 2 ). 

From the primary aim of NAGROM - to be a model for national water 
management - the following objectives are derived (De Lange, 1991): 
- 	NAGROM should be accurate for scenario's at national level. 
- 	The results of NAGROM should be comparable all over the country. 
- 	Each use of NAGROM should be accepted by the local and regional 

water authorities and institutes to which the results are of concern. 
- 	NAGROM should be maintained permanently. 
- 	NAGROM should be generally available. 
The first two objectives will be worked out in chapter 8 and the last three 
objectives are beyond the scope of this thesis. 

During the development of NAGROM, the multi-aquifer modeling 
approach has been developed as well as many other extensions in the 
modeling with analytic elements (see chapter 5 and De Lange, 1991). 
Since 1990, several multi-aquifer models of analytic elements have been 
built besides NAGROM, which have mainly been based on the NAGROM 
modeling approach. 

A model of analytic elements does not end at boundaries as it occurs in 
finite element or finite difference models, but it is bounded by a zone of 
analytic elements (the "boundary zone" or "surrounding zone") that 
separates the area of interest from the rest of the infinite aquifer. Analytic 
elements in a part of a model can be replaced by other elements without 
having to change the rest of the model. This enables to start with a course 
modeling and then refining step by step different parts all through the 
model. This refining can be repeated until the desired accuracy is reached. 
This approach is developed for NAGROM and has already been described 
in De Lange (1991). During the development of NAGROM, the distinct 
supra-regional models appeared to be very useful as a framework for 
refinements. The NAGROM models have been used to construct (by 
selection of the proper analytic elements) the boundary zone for smaller 
models. Refinements have been built in successfully for local scale models 
e.g. for the model of a silt depot in combination with a shelter-harbour 
near Weurt (Douben et al.,1994). 

2.3 	Other models of large domains 

When the development of NAGROM started in 1987, a large part of the 
Netherlands was covered by many models for the groundwater flow in the 
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saturated zone. Only two of these models can be considered as a model of 
a large domain; the model of the Central Graben in the southern part of 
the country (about 3,000 km 2 ) ( IWACO,1987) and the model of the 
province of Drenthe (about 2,500 km 2 ) ( Province of Drenthe,1985), which 
actually was not calibrated and consisted of four non-connected sub-
models. None of these models could serve as a basis for a national 
groundwater model, because they were not generally available or they 
could not be connected to form large models as part of a national model. 
Since the start of NAGROM, several other large domain models have been 
developed in the Netherlands. The models of IWACO (IWACO, 1992) and 
RIVM (Pastoors, 1992) are based on the finite element technique and, 
therefore, they can not be coupled and refined in the elegant way it is 
possible in NAGROM. For the generation of a picture at national level, the 
results (in terms of the hydraulic head) of the RIVM sub-models are 
superimposed in the area of overlap and are pasted to form one cover of 
the entire country (model version 1993). The IWACO and RIVM models 
are filled automatically with data from databases using GIS-interfaces, 
which is different from the approach in NAGROM. At the start of 
NAGROM, no database or GIS was available and therefore, the NAGROM 
models are built manually based on expert-interpretations of maps. 
Recently (1994), the upper boundary of NAGROM has been rebuilt for the 
connection with the model of the unsaturated zone MONA (section 2.2) 
using GIS. 
The actual models of IWACO and RIVM are not developed to be adapted 
afterwards for a new type of question. New questions may need an other 
schematization (e.g. a refinement) for which a complete new model should 
be generated. Then, the determination of the model boundaries and the 
calibration of the model have to be carried out again, which differs from 
the NAGROM modeling approach as sketched in section 2.2. 

Models covering large domains outside the Netherlands have been built for 
particular purposes. Most of them have been used in and areas where 
there is hardly any interaction between surface waters and groundwater. 
An example of this is the model of the Nubian aquifer in Egypt (Heinl and 
Brinkman, 1989), which has been built to compute the effects over time of 
withdrawals in a large (2,000,000 km 2 ) groundwater basin at great depth. 

2.4 	On the application of the analytic element technique 

The main difference between using the AEM and using other modeling 
techniques originates from the meaning of the elements, which will be 
summarized first. Analytic elements are analytic solutions with different 
meanings of the partial differential equation for groundwater flow in an 
infinite aquifer. Each analytic element is used to describe a feature in 
groundwater flow, such as an abstraction well, a river, a polder, an 
infiltration area, a domain with different transmissivity, a sheet pile wall, 
etc. Each analytic element can be used independently of other elements. 
Even a single analytic element such as a well, a line-sink' or an "area-
sink" (see chapter 3) can be seen as a model, because it generates a flow 
and a head distribution in the entire infinite aquifer. Analytic elements are 
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combined based on the principle of superposition. In a model, the 
strengths of the elements are computed to meet the boundary conditions. 
Analytic elements may cross, overlap and be linked together and do not 
need to form closed meshes (see chapter 5). 

Following from the difference in the meaning of the analytic elements, the 
modeling approach using this technique is also different from that using 
other techniques. In modeling with analytic elements, geohydrologic 
features have to be recognized and the appropriate type of analytic 
element has to be chosen, instead of giving each element in a finite 
element or a finite difference mesh the same, standard properties (except 
maybe at parts of the boundaries) such as the hydraulic conductivity and 
thickness of the layer. 

An other important difference between the AEM and any other technique 
is (Strack, oral communication, 1994) that in a model of analytic elements, 
reality is discretized using elements that are exact solutions of the 
differential equation, while in finite difference and finite element 
techniques, the differential equation itself is discretized as well. 

NAGROM is based on the AEM mainly because the technique enables 
flexible coupling and refining of existing models. 
Refinement of a part of an existing model is easy, because (based on the 
superposition principle) each element can be taken out independently of 
the other elements and it can be replaced by other elements, even of 
different types. For instance, an area-sink describing a domain with many 
surface waters (see chapter 6) may be replaced by line-sink elements 
simulating the individual surface waters. 
The boundary of a model of analytic elements is a zone of elements that 
globally simulate the behaviour of the geohydrologic features in that zone. 
The area of interest interacts directly with its boundary zone. Due to the 
characteristics of the AEM, coupling of models is natural; two sets of 
elements are combined based on superposition, which means here that 
parts of the boundary zones of both models are replaced by the actual 
areas of interest of both models. 

A large model can be used as boundary zone model for a detailed model in 
a smaller domain. The detailed model is really built in the coarse model. 
This is strongly different from building a separate detailed model and 
taking the boundary conditions from a coarser model as is common in the 
classical techniques. This modeling aspect turns out to be useful especially 
when the area outside the domain of interest is complex. 

In any volume in an AEM model, the water balance is accurate in the order 
of magnitude of the computer accuracy, independent of the size of the 
elements. This is important e.g. for the computation of transport of 
solvents, which requires to meet strictly fitting of the water balance 
(Douben et al., 1994). Also, at any point in the aquifers the three-
dimensional velocity vector is analytically determined. By this, numerical 
dispersion in the computation of flow paths is virtually absent. These 
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aspects are important e.g. when dealing with changes in the density 
distribution in large coastal aquifers (subsection 4.2.4). 
In 1987, two major drawbacks of the AEM were that it actually had never 
been applied in multi-aquifer models of large domains and that it was not 
clear at all how the effects of variable density in the groundwater in the 
coastal zone of the Netherlands could be included. Both of these 
drawbacks have lost their meaning since 1993. By the development of 
NAGROM, the applicability of the AEM has increased considerably: The 
building of multi-aquifer models covering large domains, the use of meshes 
of area elements to describe the interaction between groundwater and 
surface water and rules for the combination of these area elements with 
area elements for leakage between aquifers have been developed for 
NAGROM (see chapter 5). Also, the analytic solutions for curved line 
elements and for elements describing the vertical flow near wells have 
been implemented (chapter 4). In 1993, a solid and straight forward 
approach to include variable density effects has been developed (Strack 
1994). 

Still, new modules in the AEM are needed to include several basic 
geohydrologic features, such as a module to account for a gradually 
sloping base in a phreatic aquifer and a solid approach for computation of 
transient situations at a national level (section 4.5). In 1994 and 1995, 
Strack has developed theoretical solutions for these situations, which need 
to be explored further. The AEM will be strongly in development during 
the next five to ten years. It is expected by the author, that by these 
developments, the AEM will become one of the most powerful techniques 
for groundwater modeling, especially for the modeling of large domains. 
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3 	A PRACTITIONERS DESCRIPTION OF STRACK'S 
ANALYTIC ELEMENT TECHNIQUE (1992) 

3.0 Summary 

In this chapter, the principles of the analytic element technique are 
recapitulated. The basics of the discharge potential are introduced and 
different applications are described. The types of analytic elements are 
discussed as far as they were implemented in 1992 in Stracks computer 
code and as far as they can be used in large scale modeling. The underlying 
mathematics are described only as far as needed to understand the 
behaviour of the analytic elements in a groundwater model. The principles 
of a multi-aquifer model and of three-dimensional tracing are described. 
Some words are spent on the derivation of the system of equations and its 
solution. 

3.1 	Introduction 

The AEM has been found and developed by O.D.L. Strack and is presented 
in his book Groundwater Mechanics (Strack, 1989a). The main difference 
between the technique of Strack (and his followers) and other analytically-
based techniques (e.g. Van den Akker, 1982) is the implementation of 
boundary conditions and the diversity of the elements. Stracks technique 
includes Neuman, Dirichlet and Cauchy boundary conditions and contains 
point, line (straight and curved) and areal source/sink elements as well as 
several types of line-dipole elements (section 3.3). 

The AEM is different from boundary element techniques (e.g. Van der Veer, 
1978) in the sense that analytic elements generate conditions at a point, 
line or area with effects in the entire aquifer of infinite extent whereas 
boundary elements generate conditions at the outer boundary of an area of 
concern and are not used outside that area. 

The description of the analytic elements in this thesis is mainly based on 
documents of Strack (see references) but follows the author's experience in 
how this technique is used in modeling. Several applications mentioned in 
this description have been used for the first time by the author in the large 
scale groundwater model of the Netherlands NAGROM. 

In principle, analytic elements are defined as analytic solutions of the two-
dimensional Laplace (in area with recharge the Poisson) equation expressed 
in terms of the so-called discharge potential (section 3.2). Each type of 
analytic element has a different hydrological meaning (section 3.3). In the 
discharge potential several aquifer properties can be included, such as 
vertical variation in the horizontal hydraulic conductivity within an aquifer, 
impermeable horizontal Iaminae and differences in the density of 
groundwater (section 3.2). 
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A groundwater model can be seen as a combination of features in 
groundwater flow such as polders, infiltration areas, canals, rivers, 
separating layers, wells, inhomogeneities, etc. In modeling with the AEM, 
different types of features are represented by different types of analytic 
elements. The question Which analytic element represents best the 
feature in question? is typical in modeling with the AEM. 

A model of analytic elements is formed by a well-chosen combination of 
elements of different types (chapter 5). Wells are represented by point-
sinks (which also can be sources). Canals and rivers may be simulated by 
line-sinks. Area-sinks are used to model infiltration areas, polders, and 
other areal features. The interaction between aquifers is also simulated by 
area-sinks. Changes in the hydraulic conductivity, the thickness or the 
elevation of the aquifer base are simulated using line-doublets (sub-section 
3.3.6). 

The properties of analytic elements are specified by common geohydrologic 
parameters (resistance, hydraulic conductivity, etc.). Analytic elements may 
describe boundary conditions specified by the surface water level, or by the 
groundwater recharge. A problem expressed in terms of analytic elements 
is solved by computing the unknown strengths of the elements (section 
3.5). 

In this chapter, the description is limited to the elements available in the 
multi-layer version of Stracks computer code of 1992. The aim of this 
description is to provide a basis for the analysis (in chapter 5) of the 
combinations of analytic elements for use in large scale models. In chapter 
4, the developments since 1993 will be described. In this chapter, all figures 
of streamlines and lines with equal head apply to (semi-) confined flow. 

3.2 	The discharge potential 

In the AEM, the discharge potential is a key parameter. The aquifer 
properties are included in the discharge potential (subsection 3.2.2) and all 
analytic elements are expressed in terms of the discharge potential (section 
3.3). Therefore, the description of the AEM technique starts with the 
description of this parameter. 

3.2.1 Basic equations 

An analytic element is represented by a solution of the Laplace (and in 
bounded domains with recharge the Poisson) equation for two-dimensional 
groundwater flow, in which the Dupuit-Forchheimer assumption is used, 
which is adapted to account for vertical flow by Strack (1984). The Dupuit-
Forchheimer assumption implies that the flow is assumed to be mainly 
horizontal. This is valid in regional aquifers because their thickness is 
generally small compared to their extent. The mainly horizontal flow is 
expressed by a constant head over the entire aquifer thickness. This latter 
may be interpreted (Strack, 1984) in such a way that, in modeling practice, 
the resistance to vertical flow is neglected in the aquifers and is lumped in 

24 



the resistance value of the separating layers. The aquitards are simulated by 
separating layers in which the horizontal flow is neglected. 
In the first step of the theory of analytic elements, Strack (1989a) assumes 
the aquifers to be homogeneous and isotropic with steady flow. (In later 
steps, these restrictions are largely overcome). 

In the case of flow under the Dupuit-Forchheimer assumption, the mass 
balance equation can be described by: 

= - y 	 (3.1) 

where Qx  and QY are the discharges per unit width [L 3/L.T] in x- and 
y-direction respectively and y  is tie vertical flux per unit area [L/T]. Using 
Qx  and QY,  Darcys law is expressed by: 

= - kh 	0y = - kh 	- 	 (3.2)
ay  

where k is the hydraulic conductivity [LIT], h is the thickness over which 
the groundwater flow occurs [L] and p  is the hydraulic head [L]. 

top of aquifer 

>// 	 Jbaseofaquifer 

(semi-) confined flow 	unconfined flow 

Figure 3.2.1 Scheme of flow under confined and uncon fined 
conditions. 

The thickness h over which the groundwater flow occurs is constant in the 
case of confined flow (figure 3.2.1, left hand side): 

h = H 
	

(3.3) 

In the case of unconfined flow, the thickness h is variable and equal to the 
head 0 if the reference level is at the base of the aquifer (figure 3.2.1 right 
hand side): 

h=q 	 (3.4) 

In the case of semi-confined flow, h is equal to H similar as in the case of 
confined flow. Semi-confined flow is modeled in an approximate way and 
will be discussed in subsection 3.3.7. 
Equation (3.2) can be rewritten as: 
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Qy=_ 	 (3.5) 

where 1 is the discharge potential [L 3 /T]. The discharge potential (or just 
potential) is a key variable in the AEM. All expressions for the elements are 
in terms of the potential (section 3.3). Several properties of the aquifer 
such as thin impermeable layers, vertical variation of the horizontal 
hydraulic conductivity and density differences can be included by an 
appropriate expression for the potential (see subsection 3.2.2). 

The discharge potential I can be expressed in terms of k, H and 0 in the 
case of confined flow by substitution of (3.2) and (3.3) in (3.5): 

Oc  = kH(p + C 
	

(3.6) 

and in terms of k and 0 in case of unconfined flow by substituting (3.2) 
and (3.4) in (3.5): 

= /21<(0 + C u 
	 (3.7) 

The integration constants C and C u  can be used to satisfy the condition of 
continuity in 0, at the boundary between confined and unconfined flow 
(see figure 3.2.1 point P). By choosing C = 0 (Strack, 1989a), this leads to: 

= kHp - 1 /21<H 2 	(p ~! H) 	 (3.8) 
((p:!~ H) 	 (3.9) 

So, the potential 1 describes groundwater flow under confined as well as 
under unconfined conditions. In confined situations I is linearly related to 
p, in unconfined situations a quadratic relation is found, which may 
necessitate iteration during the solution (the computation of the unknown 
strengths). By substitution of (3.5) in (3.1), the Poisson equation (Laplace 
equation if 'y = 0) for two-dimensional flow in i is derived. 

+ 	=7 	 (3.10) 
y2  

Because this is a linear differential equation, its solutions may be added and 
subtracted to derive new solutions (principle of superposition). The most 
simple solutions of this differential equation are the constant discharge 
potential (describing no flow), the discharge potential linearly varying in x 
and y (describing uniform flow) and the discharge potential quadratic in x 
and y (describing vertical inflow of water over an infinite area). The latter 
two solutions are treated extensively in Strack (1989a) and are called 
"uniform flow" and "rain". They can not be applied in large scale 
modeling because their effects do not vanish at large distances. Therefore, 
they will not be discussed in this thesis. Also, the analytic element called 
"pond" is not treated here, because its circular shape is unsuitable for use 
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in large multi-aquifer models and it can be seen a special case of an 
area-sink. 

Each analytic element except the area-sink is a solution of the Laplace 
equation. Within the area-sink the Poisson equation holds, outside the 
element the Laplace equation holds. Each element is iescribed in terms of 

so regardless whether the flow is unconfined or confined. Once the 
solution in (D has been computed and the values of k and H are known, 
the solution in p  can be found unambiguously by applying the relation for 
either ç ~! H or p  !~ H. Therefore, analytic elements may be added and 
removed freely in a model. 

Analytic elements generate continuous fields of both the potential i and, 
when excluding areal recharge, the stream function P [L 3 /T]. Similar to the 
Laplace equation in , the differential equation in terms of the stream 
function P reads: 

EL  + 	=0 	 (3.11) 
Jx2  

The potential and the stream function are related by the Cauchy-Riemann 
conditions: 

= - 	

jqi 	= 	
(3.12)

ax 

These conditions describe that streamlines are perpendicular to lines of 
equal potential. Assuming groundwater flow in a two dimensional space, 
analytic elements can be formulated in the complex plane (z = x + ly). The 
potential (D and stream function P can be combined in the complex 
potential Q by: 

= 	+ iP 
	

(3.13) 

where: 
= complex potential [L 3 /T1 

Using the complex variables Q and z, the mathematical expressions for the 
analytic elements become simple and clear to understand (section 3.3). The 
shape of both the potential 1 and stream function P is described in the 
infinite aquifer by a single expression for the complex potential Q. 

A model in groundwater flow consists of a combination of analytic 
elements in one or several aquifers. Superposition of the complex potentials 
Q of all analytic elements leads to the complete solution in z. Then, the 
values of the stream function (except inside the area-sinks) and the 
potential can be computed at any point in any of the aquifers. 
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3.2.2 Extended applications of the discharge potential 

Although it is a single variable, the potential J may account for flow in an 
aquifer with a fresh water salt water interface, for flow in aquifers with 
impermeable horizontal laminae and for aquifers with vertically varying 
horizontal hydraulic conductivity. In order to give an idea on how this 
works, the formulas for these situations are presented. Their derivations can 
be found in Strack (1989a). The different situations described in this 
subsection can be merged when needed. Strack (1989a) shows some 
combinations. It is important to realize, that all solutions of equation (3.10) 
apply to these situations and their combinations. 

Interface between fresh and salt groundwater 

A sharp interface between salt and fresh groundwater is often found along 
coastlines, e.g. in the Dutch dune area along the North Sea coast. In the 
case of flow in an aquifer with a sharp interface between fresh and salt 
water, Strack assumed the salt water to be stagnant while the interface 
should be above the base of the aquifer. 

E EI 

0, D (p, 

fresh 

aCe 

salt 

p 

Land surface 

Tr - - - - - - T - - - fresh - - - 

salt 

(a) confined aquifer 	 (b) phreatic aquifer 

Figure 3.2.2. Definition scheme for an aquifer with a sharp interface. 

The potential 	for this case is given by: 
-for confined flow conditions (see figure 3.2.2-a): 

= - k12 v [p 
- PsPs'Pf - Div]2  + C 	(p H) 	 (3.14) 

-for unconfined flow conditions (see figure 3.2.2-b): 

= - k/2v[p-H] 2 +C 	@p ~!H) 	 (3.15) 

where: 
D 	= distance between the top of the aquifer and the reference level [L] 

= integration constants for unconfined and confined situations 
respectively 

= head (in terms of p) in the saline part of the aquifer [L] 
Ds 	= depth of the interface with respect to the reference level [L] 



v 	= relative density, = (p 5  - pf)/pf [-I 
PS 	= density of salt water [M/L 3 ] 
pf 	= density of fresh water [M/L 3 ] 
In 1991, Strack implemented this potential in a special version of the 
AEM computer code, which has been applied to model a small coastal 
zone in the Netherlands (sandy dunes of Goeree). Comparison with a 
finite element model of the same area showed good agreement with 
respect to the position of the interface. Apart from the implementation of 
the interface in the AEM model by the author, both models have been 
built by dr W . J. Zaadnoordijk of IWACO Rotterdam. 

In 1992, Strack (oral presentation) derived a solution for the case of a 
sharp interface with salt water flowing instead of being stagnant. This 
has not been developed further because Strack found in 1993 a solution 
for the implementation of three-dimensional variation of the density 
(chapter 4). 

Impermeable horizontal laminae 

Impermeable laminae (figure 3.2.3) are impermeable horizontal planes of 
limited extension in the aquifer. They can be used to model relatively thin, 
horizontal layers with very high resistance. 

Thaticc 

lamina 

lamina 

aquifer base 

Figure 3.2.3 	Impermeable laminae in an aquifer. 

To include impermeable horizontal laminae in an aquifer, the potential D is 
presented by: 

- if the upper part of the aquifer is confined: 

= 1/2k[(p - HI 2  + 	 (p H) 	 (3.16) 

- if the upper part of the aquifer is unconfined: 

= 1/2k[(p - H] 2  + 1 /21<1-1p 1  + 1 /21-1 2 	(0 ~! H) 	 (3.17) 

where the integration constants have been defined similar as in the 
derivation of expressions (3.8) and (3.9) and where: 

= head in the upper part of the aquifer [L] 
91 	= head in the lower part of the aquifer [L] 

29 



Laminae are particularly appropriate in relatively simple models of small 
areas and have not been used yet in the model of the Netherlands. In 
Stracks book (1989a) more information on the use of these Iaminae is 
given. 

Vertically varying horizontal hydraulic conductivity in an aquifer 

Vertically varying horizontal hydraulic conductivity occurs for instance in 
chalk aquifers in the southern part of the Netherlands (South-Limburg). In 
such aquifers, leaching may create pores and cracks in the upper part of the 
aquifer leading to increased hydraulic conductivity. In the deeper part of the 
aquifer, the hydraulic conductivity does not change. 

The potential 'T can account for vertically varying horizontal hydraulic 
conductivity in aquifers with the equation (Girinski, 1946; see figure 3.2.4): 

j=m-i 
[k1H((p - 13) - 1 /2k(f3. 	- 3)2 1 + 1/2km((P - 13 m)2 	(3.18) 

l=i 

where the integration constants are used similarly as in expressions (3.16) 
and (3.17) and where: 

b1  = base level of j - th layer [U 

When brn  < (p < b 1  the last term in (3.18) expresses the upper unconfined 
layer m. If the aquifer is entirely confined the last term vanishes. 

This potential has been used in several test models in the area of South-
Limburg. In this area, rivers cut deep in the chalk aquifers in which the 
hydraulic conductivity decreases strongly with depth. The effect of the 
variation in the hydraulic conductivity on the distribution of the ground-
water heads was clearly demonstrated by the models. 
b, 1 

and surface 

Layer m 	 k,, H,, 	 P reatC surface 

b,,, 

b 	
Layer rn-i 	 k,,1 H,,-1 

b3 

b 	
Layer 2 	 k2 H 2  

Layer i 	 k 1  H 1  
b1 	 aquifer base 

\ 

Figure 3.2.4. Vertically varying hydraulic conductivity in an aquifer. 
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3.3 	Description of analytic elements 

Starting with the classic well or point-sink, the analytic elements are 
described in such an order that each element is an extension of one or 
more elements described before that element. 

3.3.1 The point-sink (well). 

One of the most elementary examples of analytic elements is the point-sink 
or the fully penetrating well. 

kH= 100 m2 /d 	Q=10OOm 3 /d 	 400m 

Figure 3.3.1. 	Lines of equal head (meters above reference level) and 
streamlines of a well element. 

In radial coordinates (r,O) the potential is: 

Cr) = 	In ( rr 
	+ ref 	 (3.19) 

2ic 

where: 
= distance between the well and the observation point [L] 

rref = distance between the well and the reference point [L] 
= discharge or strength of the well [L 3 /T] 

ref = potential at the reference point [L 3/T] 
1(r) = potential at distance r from the well 11L 3/TI 

This analytic element causes the potential value to change logarithmically 
with the distance to the sink, as presented in figure 3.3.1. The value ref  in 
a reference point at r = rref can be chosen arbitrarily. 

Once the strength Qw  is given and the potential ref  at the reference point 
is defined, the potential distribution is determined in the entire aquifer. If, 
instead of the strength Q, a second potential value (e.g. 0(r 1 ) with r 1  is a 
radius) in the aquifer is given, Qw  can be computed and the potential 
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distribution is also known. In Stracks computer codes, this second potential 
value is prescribed by default at the radius of the well (r 1  = r), 
representing the head maintained in the well. So, either the strength or the 
head of a well can be specified, which form the Dirichlet and the Neuman 
boundary condition respectively. A Cauchy boundary condition (a linear 
relation between the strength and a head) is not implemented yet. It might 
be used e.g. to simulate a resistance to flow near the entrance of the well. 

Using the complex orthogonal-radial conversion equation: 

z = re'° 	 (3.20) 

the Cauchy-Riemann conditions (3.12) can be rewritten as: 

jqi 
- 	 (3.21) 

ar 	re 

By combination of (3.19) and (3.21), the expression of the stream function 
becomes 

T(0) = Qw  O/2it 	 (3.22) 

So, the stream function jumps at 0 = 27t along a line emanating from the 
well (Strack 1989a, p. 226). As can be seen in figure 3.3.1, the flow occurs 
from or to the well along lines emanating from the well. Substitution of 
(3.19) and (3.22) in (3.13) gives the function of the complex potential: 

Q(z) = Qw  ln(z-z0) /271 + ref 	 (3.23) 

where 
z-z0  = distance between well and observation point 

This expression describes both the potential and stream function in the 
infinite aquifer for a fully penetrating well. It illustrates, how the 
geohydrological properties of an analytic element can be described 
completely in a single equation in the complex plane. The logarithmic 
function in (3.23) determines the shape of the potential and stream function 
field created by the element and is called the shape function of the element. 

Wells are used in those cases where with drawal or suppletion of water 
occurs in a small area (a point) as compared to the size of the modeled 
domain. In subsection 5.2.1, it will be discussed how partially penetrating 
wells can be included in the AEM. 

3.3.2 The line-sink (river) 

Line-sinks are used to model inflow or outflow along a line. A line-sink can 
be seen as an infinite number of point-sinks (wells) along a straight line. 
Each point-sink represents a length d8 of the line and has an extraction rate 
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of cy li , d (figure 3.3.2). The discharge of the line-sink is described by: 

= J odö 
	

(3.24) 
L 

where: 
Q1 = line-sink discharge [L 3 /T] 

Iin = line-sink strength per unit length, function of S [L 3/L.T} 

Figure 3.3.2. 	Definition scheme for a line-sink element. 

Along a line, the strength can theoretically be distributed with functions of 
any order. In Stracks AEM, both the constant and linear strength 
distribution are implemented. Combination of (3.24) and (3.23) leads to: 

Q(z) = S G1in In(z - 6)121t dS + ref 	 (3.25) 
L 

where: 
z - S = distance between observation point z and point of integration 

S [L] 

The expressions for 1 and T are presented in Strack (1989a, pp.  287-288). 
As illustrated in figure 3.3.2 (right hand side), the value of the flux (stream 
function) jumps over the line-sink and the potential is continuous. Near the 
centre of the line-sink, the flow is perpendicular and the lines of equal head 
are parallel to the line-sink (figure 3.3.3). At the ends of the line-sink, the 
flow is approximately radial and the lines of equal head are approximately 
circular. At larger distance, the line-sink causes almost circular lines of equal 
head, because when looking from a large distance to the line-sink it 
behaves similar to a point-sink. 

In analogy to the well, equation (3.25) describes the potential and stream 
function of the line-sink in the aquifer by its strength Glin  and by its shape 
function. 
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Figure 3.3.3 	Lines of equal head (meters above reference level) and 
streamlines of a line-sink element. 

In Stracks computer code, three boundary conditions (Dirichiet, Neuman, 
Cauchy) can be used with the line-sink (the Cauchy boundary condition 
since 1992). The head of a constant strength line-sink p is defined at the 
centre of the element, which is the so-called control point. The strength is 
computed in a way similar to that in the case of the well. Along the rest of 
the line-sink the head depends on the head in the neighbourhood (see also 
subsection 5.2.2). Therefore, a river with a gradually decreasing hydraulic 
head can be modeled using concatenated, relatively long head-specified 
line-sinks, if the distribution of the in- and outflow is of minor importance. 
On the other hand, a surface water generating a constant groundwater 
level can be simulated by a series of short head-specified line-sinks. They 
maintain the constant hydraulic head by adjustment of their strengths (see 
also the application of a canal, subsection 3.3.4). 

A linear line-sink exists of line-segments with linearly varying strength. The 
heads in such an element are specified at the points between the segments 
and at the end points. The linear strength distribution per segment enables 
to account for variation in the inflow and outflow along the line-sink. This 
element enables to model inflow in and outflow from rivers more 
accurately than the element with constant strength. 

In geohydrologic terms, a line-sink expresses a fully penetrating feature. In 
subsection 5.2.2, two ways to simulate a partially penetrating line-sink are 
discussed. 

Line-sinks can be used to generate a "uniform flow" field in the 
surrounding zone of a regional model. For this purpose, the lengths of the 
line-sinks should be large as compared to the model area. In this way, a 
"head-specified" uniform flow is generated instead of the commonly used 
"flux-specified" uniform flow (see text with equation (3.10)). 
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3.3.3 The dipole 

As the word says, a dipole consists of two poles, a sink and a source with 
equal but opposite strengths nearly at the same place (figure 3.3.4). This 
element does not express any useful element in geohydrologic practice. 

\-4- 
observation point 

\ 

Figure 3.3.4 	Definition scheme for a dipole. 

However, it is treated here, because it forms an essential step in the theory 
of analytic elements. In the next sections, other useful types of analytic 
elements are derived based on the dipole. 

line of 
equal head 

stream line 

Figure 3.3.5. 	Lines of equal head (meters above reference level) and 
streamlines of the dipole-type analytic element. 

As can be seen from figure 3.3.5, the lines of equal head of a dipole are 
circles eccentrically situated around each pole. Streamlines form a similar 
picture rotated 90 degrees arouid the centre of the dipole. The values of 
both the head and flux decrease with the distance to the dipole and are 
linearly dependent on the strength of the dipole. The strength of the dipole 
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is equal to the strength of the poles multiplied by the distance between the 
poles. These properties can be found from the formula for the potential of 
a dipole (Strack, 1989a): 

	

= "dip cos(O - gO) / 21tr + ref 	 (3.26) 

and from the formula for the stream function: 

I(r,O) = 'dip sin(e - (SO) / 2mr 	 (3.27) 

where: 
= distance between dipole and observation point [U 

"dip = strength of the dipole [L*L3/T] 
= orientation of the dipole N. 

Equation (3.27) can also be derived from equation (3.26), using equation 
(3.21). Substitution of (3.26) and (3.27) in equation (3.13), leads to the 
expression: 

	

= "dip exp(i° - 0)! 2mr + (t) ref 	 (3.28) 

Again, a simple expression for Q is found. The dipole is described by its 
strength r'dip  and by its shape function, which is reciprocal in r. A dipole 
does not extract any water, as the strengths of both poles are opposite and 
equal. However, these strengths do affect the potential and stream 
function. 

3.3.4 The line-dipole (crack, drain, canal) 

An infinite number of dipoles along a line is called a line-dipole or line-
doublet (Strack, 1989a). At a line-dipole, the orientation of the dipoles is 
equal to the orientation of the line (figure 3.3.6) and at a line-doublet the 
orientation is perpendicular to the line (subsection 3.3.5). A line-dipole may 
represent a thin zone of very high hydraulic conductivity, as it can be found 
in cracks. 
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Figure 3.3.6. 	Definition scheme fora line-dipole element. 

Similar to the derivation of the line-sink from the point-sink (well), the line-
dipole is derived from the dipole. Integration of dipoles with strength 
Cydipd6 over length L and substitution in equation (3.28) leads to: 

	

Q(z) = S 	dip exp(iIY) / 27t(z-) do + ref 	 (3.29) 

where: 
z-O = distance between observation point z and point of integration 0 [L] 
go = orientation of line-dipole (equal to orientation of dipole) [-1 
dip = strength per unit length, function of 0 [L 3 /L.T] 

Across the element, the potential is continuous and the stream function 
jumps. 

Stracks implementation is based on Laurent expansions (Strack, 1989a, 
pp. 462-466) around the line-dipole. The two central expansions' 
generate a singular behaviour around the tips. At a user defined number of 
points "local expansions" can be generated, which affect the behaviour 
merely near these points. The more local expansions, the more detailed the 
flow conditions can be accounted for 
The order of the Laurent expansions can be defined by the user. It 
determines the degree of freedom of the element, which can be seen as 
the ability to account for differences in the flux and head along and across 
the element. 
The coefficients in the expansion functions are computed according to the 
condition specified at a user defined number of control points. The number 
of control points must be larger than the number of points with a local 
expansion. The adjustment of the behaviour of line-dipoles appears to be 
difficult, because there is no direct relation between the behaviour and the 
steering parameters. 

For geohydrological practice, the physics of the line-dipole can be described 
as follows. Each dipole at the line generates inflow and outflow. The one 
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pole of the first dipole abstracts water from the aquifer. The other pole 
generates outflow which directly is inflow of the next dipole. This repeats 
until the last dipole. The second pole of last dipole infiltrates water into the 
aquifer. The strength of the dipoles determines the flux through the line-
dipole. 

-y 
I \// 

[52 
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kl-1 = 100 rrY/d uniform flow = 1 m 2/d © nr. of stream line 50 head 	lOOm 

Figure 3.3.7. 	Lines of equal head (meters above reference level) and 
streamlines near a drain in uniform flow. 

Figure 3.3.8 	Difference in the head distribution between the cases of 
uniform flow with and without the drain of figure 3.3.7. 

The dipoles along the line do not necessarily consist of a source and sink of 
equal strength but may generate a net abstraction or infiltration of water in 
the aquifer. In the lower part of the line-dipole of figure 3.3,7 (which is a 
drain, see later in this subsection), the groundwater flows into the line-
dipole, in the upper part the groundwater flows out of the element. 

A concentration of inflow and outflow occurs at both line ends. This can 
also be seen in the steep gradients near the tips in figure 3.3.8. Strack 
(1989a, pp 462-466) formulated these singularities in terms of complex 
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square-root functions. As the singularities occur at both ends, all elements 
with singularities at the tips are called double-root (DROOT) elements. The 
singular behaviour at the tips disables the possibility to connect these 
elements mutually. 

In the AEM three different types of straight line-dipoles are distinguished: 
1 - the canal, a line with prescribed head and infinite transmissivity; 
2 - the drain, creating continuity of flow through a line with infinite 

transmissivity; 
3 - the crack, creating continuity of flow through a line with specified 

transmissivity (so, with a width and a hydraulic conductivity). 

Of these three line-dipoles, only the canal can abstract (or infiltrate) water 
from (or into) the aquifer. It can also be seen as a drain, in which a head 
specified well is added. A drain can be seen as a crack with an infinitely 
high transmissivity. 

The canal generates flow in order to maintain the prescribed head in the 
aquifer. The drain and the crack do not abstract water from the aquifer and 
the head in these elements is determined by their environment. In a model 
with only these elements no flow will occur. Therefore, the drain in figure 
3.3.7 is defined in a uniform flow. 

The strength distribution of the line-dipole depends on the distribution of 
the flux across the line as generated by the other elements in the model. 
Figure 3.3.8 presents the difference in the head distribution between the 
cases of uniform flow with and without the drain of figure 3.3.7. In a 
general model, the effect shall be less symmetrical than in the case of 
figure 3.3.8, because the distribution of the flux near the element will not 
be as perfectly uniform as it is in the case presented in this figure. 

A crack is developed to model thin features in groundwater flow such as 
cracks in rock. The transmissivity of a crack is defined (Strack, 1989a) as 
kcrB cr, which is the product of the hydraulic conductivity kcr  and the width 
Bcr  The thickness of the crack is equal to the aquifer thickness at the place 
of the crack. 

To understand the definition of the transmissivity of a crack, consider a 
strip of a width b [L] in the aquifer. This strip can be seen as a tube 
characterized by three parameters; the width b, the hydraulic conductivity 
k0  and the thickness H 0 . A crack is a similar tube with parameters width Bcr , 
hydraulic conductivity kcr  and thickness H 0 , but it is simulated as a line of 
negligible width. The aquifer itself remains unchanged. 

3.3.5 The non-connectable line-doublet (leaky wall, 
impermeable wall) 

A line of dipoles is called line-doublet if the orientation of the dipoles is 
perpendicular to the line (figure 3.3.9). The abstracting poles (plus sign, 
sink type) occur along one side and the injecting poles (minus sign, source 
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type) along the other side. The line-doublet withdraws water along one 
side and injects the same magnitude along the other side. So, in the 
aquifer, it is as if water flows continuously across the element, while a jump 
in the potential is created. In this section, non-connectable line-doublets 
(leaky wall and impermeable wall) are discussed. In the subsection (3.3.6) 
the connectable line-doublet is introduced. 

leaky 

section across line-doublet 

Figure 3.3.9. 	Definition scheme for a line-doublet element. 

The equation for a line-doublet can be found in the same way as for the 
line-dipole and reads (Strack, 1989a): 

Q(z) = i/27i J dou exp(ia°) / (z-6) do + ref 	 (3.30) 
L 

where: 
z-O = 	distance between observation point z and point of integration 6 [L] 

dou = 	strength of line-doublet as a function of 6 [L 3 /L.TI 
a° = 	orientation of the line-doublet (1° + it/2) [-I 

This equation is formally equal to (3.29); only the terms expressing the 
orientation of the dipoles (13° and a°) are different. 

A line-doublet creates a jump in the potential 1 (see figure 3.3.9), while 
the stream function (and the flux) remains continuous. From equations 
(3.8) and (3.9), it follows that t = f(p,k,H). If k and H are constant across 
the line, the jump should be in the head p  and may describe a loss of head. 
Then, the resistance [T] of a line-doublet of type leaky wall (figure 3.3.10) 
can be defined as the loss of the head [L] divided by the flux [L/TI across 
the element. 

The behaviour of the element depends on the distribution of the flux across 
the element generated by the other elements in the model. Figure 3.3.11 
presents the difference in the head distribution between the cases with and 
without the leaky wall in uniform flow in the case of figure 3.3.10. In 
general, the distribution of the effect will be different from that presented 
in figure 3.3.11, because in a real model the flux near the element will not 
be as constant as the uniform flow in this figure. 
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Figure 3.3.10. 	Lines of equal head (meters above reference level) and 
streamlines of a line-doublet element (leaky wall) in 
uniform flow. 

Figure 3.3.11 	Difference in the head distribution between the cases 
of uniform flow with and without the leaky wall of figure 
3.3.10. 

The leaky wall element is generated by the same Laurent expansions as 
used in the case of the line-dipole (section 3.3.4). Adjustment of the 
behaviour of the element is as difficult as with line-dipoles. The resistance 
of the leaky wall is specified at the control points, which are distributed in 
the same way as with the line-dipole elements. The leaky wall may 
simulate a (leaky) sheet pile wall. It can also be used to simulate a local 
barrier in the transmissivity (e.g. ice-pushed ridges). 

An impermeable wall is equal to a leaky wall with infinite resistance. 
However, a new type of element is defined because the mathematical 
elaboration of (3.30) becomes different from that of the leaky wall (Strack, 
1989a). The flux across the element is zero, which is implemented in 
Stracks computer code by the condition of a constant value of the stream 
function. This leads to a particular constraint in the application of the 
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element: infiltration from the upper or lower boundary of the aquifer into 
the element is not allowed, because then the stream function can not be 
constant. The undesirable reaction of the element under such conditions 
appears clearly in any model. 

From a modeling point of view, the behaviour of an impermeable wall is 
equivalent to the behaviour of a leaky wall with a very high resistance. In 
modeling, a leaky wall is preferred because it is not affected by any kind of 
infiltration. 

3.3.6 The connectable line-doublet (inhomogeneity) 

A line-doublet creates a jump in the potential J, while the stream function 
(and the flux) remains continuous (see figure 3.3.9). 

From equations (3.8) and (3.9), it follows that 1 = f(p,k,H). In the case of 
a line-doublet of type inhomogeneity, the head qi remains constant across 
the line and a jump in the transmissivity kH is generated (figure 3.3.12). 

b - ---------
potential (D 

ad I 

Figure 3.3.12. 	Definition scheme for a line-doublet inhomogeneity. 

In Stracks AEM, the inhomogeneity is bounded by a closed string of 
straight elements called segments. Figure 3.3.13 shows that streamlines 
can be computed very accurately at any point of an arbitrary boundary 
when using many segments. Along the boundary, the jump can be defined 
in any combination of a change in the hydraulic conductivity k flh, the 
thickness Hflh  and the base elevation B fl h, which are defined inside the 
element. Across the boundary of an inhomogeneity, the streamlines and 
the lines of equal head satisfy the physical laws of refraction. 

In figure 3.3.14, the difference in the head distribution between the cases 
of uniform flow with and without the inhomogeneity in the case of figure 
3.3.13 is presented. The behaviour of the element depends on the 
distribution of the flux across the element, which is generated by the other 
elements in the model, in this case uniform flow. 
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When only kjflh  is different from the overall hydraulic conductivity k, the 
jump Gi,h {1-3 /1-3] in the potential (the strength of the line-doublet) may 
be expressed by (Strack, 1989a): 

°nh = (D (k - k ln h)/ k 
	

(3.31) 

where 't is the discharge potential at the outside of the boundary [L 3 /T1. 
In this case, the strength is linearly related to the outside potential and can 
be computed implicitly. 

II 
kH = 100 mId 	kh Hjh = 1000 m/d 	uniform flow = 1 m/d 	lOOm 

Figuur 3.3.13. 	Lines of equal head (meters above reference level) and 
streamlines of an inhomogeneity element in uniform 
flow. 

Figure 3.3.14 	Difference in the head distribution between the cases of 
uniform flow with and without the inhomogeneity of 
figure 3.3.13 
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When the base or the thickness in an unconfined aquifer changes, the 
expression for the strength Cy inh is not linear in 1Y and iteration is 
necessary. If a model is applied for groundwater quantity problems only, 
the change in the transmissivity (k lflh  and/or Hjflh)  in (semi-) confined 
aquifers can be simulated by an inhomogeneity with only a different 
hydraulic conductivity k fl h keeping the thickness H constant in the model 
applying: 

kh = ( kj fl hHj fl h 	/ H 
	

(3.32) 

where the subscript c, nc 
 applies to the transmissivity in the conceptual 

model. In this way, iteration has been avoided in almost all models in 
NAGROM (section 3.1). This type of model should not be used for 
scenarios demanding flow paths or particle tracking, because the hydraulic 
conductivity in the inhomogeneities is only a model parameter. For these 
latter purposes, the thickness should be adjusted necessitating iteration. A 
an ultimate trick to avoid iteration, the porosity can be changed inside the 
inhomogeneity to generate the right flow velocities. 

Only a jump in the base elevation (so hydraulic conductivity and thickness 
remaining constant) does not have any effect on the heads and the fluxes 
in a (semi-) confined aquifer. In these situations, a jump in the base is only 
relevant for the determination of streamlines. A jump in the base is 
geohydrologically important when phreatic flow occurs in the aquifer, 
because then it affects the transmissivity. A jump in the base in a confined 
aquifer with constant thickness and constant hydraulic conductivity does 
not affect the distribution of the head or of the flow in horizontal direction. 

Strack and Haitjema (1981) compared an analytic solution for a circular 
inhomogeneity in uniform flow with a computed solution of an 
in homogeneity with a boundary of 28 segments. They compared the 
results of an inhomogeneity with a linear strength distribution per segment 
to one with a second order (parabolic) strength distribution per segment. 
Application of the latter distribution appeared to give superior results and is 
used since then. The parabolic strength distribution demands an extra 
control point (point in which the specified conditions are fulfilled) for each 
segment. This control point is defined in the centre of each segment, while 
the other control points are defined at the endpoints of the segments. 

3.3.7 The area-sink for surface conditions 

Strack implemented the area-sink as an element on top or at the bottom of 
an aquifer generating a constant vertical inflow, outflow or through-flow 
over a quadrangular area. 

Originally, Strack (oral communication, 1989) derived the formulas for the 
area-sink by integration of point-sinks over an area (cf. derivation of the 
line-sink in sub-section 3.3.2). However, the expression for the area-sink 
can be explained more easy by observing the potential and flux 
distributions inside, at and outside its boundary (see figure 3.3.15). 
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Consider an area-sink element with domain A and boundary C. In domain 
A, water is abstracted or infiltrated at a constant strength y (figure 3.3.15, 
left). 

	

_ 	

C A C 	 Cc 

q  4-- r  _* 	= 	 + ~:qj 

	

complete function 	 inside function 	 outside function 

line elements at boundary 

Figure 3.3.15. 	Definition scheme for area-sink elements. 

In domain A, the Poisson equation (3.10) is valid leading to a solution with 
ywhich is parabolic in x andy. Strack (oral communication, 1993) proved 
mathematically, that any kind of parabolic expression with y,  applied in the 
area-sink with constant strength, leads to one and the same distribution of 
the potential and stream function. This is due to the presence of line 
elements at the boundary of the area-sink, see hereafter. So, any arbitrary 
parabolic distribution with 'y can be used. 

The strength yjumps at boundary C to y= 0 outside the area-sink. 
Continuity of the potential J at boundary C requires jumps in both the 
potential and the stream function (figure 3.3.15, middle). Along each line-
segment of boundary C, these jumps are generated by (figure 3.3.15, 
right) (1) a line-doublet (3.30) generating the jump in the potential 
function and by (2) a line-sink (3.24) generating the jump in the stream 
function. 

N' 

/ 

/ 
N 

kH = 100 mC'd 	. -0 . 001 m/d (downward inside area-sink) 	 lOOm 

Figure 3.3.16 
	

Lines of equal head (meters above reference level) and 
streamlines of an area-sink element. 
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So, the complete solution for the area-sink exists of two expressions: 
- one for the inside, including the solution with strength y (which is 
parabolic in some direction X) and by the line-doublets and the line-sinks 
along boundary C: 

Q(z) = i/21c S odp/(z - ) d + 112m S (51in ln(z - ö) do + 1 /2 -2 + ref 
C 	 C 	 (3.33) 

- and one for the outside, generated by the line-doublets and line-sinks 
along boundary C: 

= /2m S dIp/' (z) dO + 1/2715 o 1j , ln(z - 0) dO + ref 	(334) 
C 	 C 

of which all parameters have been explained before. The distributions from 
(3.33) and (3.34) are generated in the aquifer and are superimposed to the 
distribution generated by the other elements in the model. 

At present, the surface area-sink (figure 3.3.16) can be specified by either 
the abstraction rate (Neuman boundary condition) or by the hydraulic 
resistance of a separating layer and the surface water level on top of that 
layer (Cauchy boundary condition). The latter condition can be used to 
model polder areas or lakes and is described by: 

(3.35) 

where: 
c = hydraulic resistance of separating top layer [T] 
p = surface water level [L] 

= head in the regional aquifer [L] 

The strength y is constant over the area-sink and is determined at the 
centre of the area, at the control point. In chapter 6, it is shown that (3.35) 
can be used to describe a more complex interaction between surface water 
and groundwater in areas, that are not polders or lakes. 

3.3.8 The area-sink for the connection of aquifers 

The Cauchy boundary condition is also used to describe the connection 
between two aquifers (figure 3.3.17) by: 

7 = (pi - P2) / c2 	 (3.36) 

where cj  and P2  are the heads [L] in the upper and lower regional aquifer 
respectively and c2  is the resistance [T] of the separating layer in between 
the aquifers. The strength y is constant over the area-sink and is 
determined at the centre of the area, at the control point. 
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Figure 3.317. Two aquifers connected by leakage-type area elements. 

This area-sink simulates vertical flow between the two aquifers and is 
called leakage area-sink. In fact, this is the element that changes a single 
layer model into a multi-layer model. At places, where these area-sinks are 
absent, no flow occurs and an impermeable separating layer is implicitly 
simulated (figure 3.3.17). 

3.4 	The extension to a semi-three-dimensional method 

In the Dupuit-Forchheimer assumption, the head is constant over the 
vertical axes within the aquifer. Then, vertical flow may exist in the aquifer 
if the resistance in vertical direction is negligible (Strack (1984). Vertical 
flow in an AEM model mainly is induced by elements and then occurs 
inside elements. 

3.4.1 Computation of the vertical flow velocity 

Vertical flow in the AEM is based on the theory presented in Strack (1984). 
Analytic elements are defined in the complex (horizontal) plane and 
generate a two-dimensional field of the potential and stream function. In 
the derivation of the formulas, the Dupuit-Forchheimer assumption is used. 
Strack (1984) interpreted this assumption in such a way that the resistance 
to vertical flow in the aquifer is negligible. Because the vertical flow itself is 
not neglected, the analytic element technique can be extended to semi-
three-dimensional flow. 

The vertical flow velocity inside area-sinks is computed using the distinction 
between elements at the top and at the bottom of each aquifer. In figure 
3.4.1, a flow velocity distribution inside an area-sink at the top of the 
aquifer is shown in a vertical section along a flow path. Continuity of flow 
leads to the velocity distribution in the vertical section. The flow velocity in 
horizontal direction follows from the inflow at the left boundary and the 
inflow along the top of the aquifer and increases from left to right below 
the area-sink. 
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Figure 3.4.1. 	Flow velocity distribution in a vertical section partly 
below an area-sink along a path line using continuity of 
flow. 

The vertical flow velocity decreases linearly from the infiltration rate at the 
top of the aquifer to zero at the bottom. This approach can also be used in 
cases with area-sinks both on top and at the bottom of the aquifer or only 
at the bottom of the aquifer. 

Strack (1984) gives more examples of flow in vertical sections, as well as a 
comprehensive treatment of the theory behind it. He also shows that flow 
velocities computed in this way, in many cases, almost equal the exact 
three-dimensional solution. 

3.4.2 Vertical flow in other situations 

Vertical flow occurs at places where (figure 3.4.2): 
1 - inflow or outflow occurs, 
2 - the aquifer is phreatic, 
3 - the base of the aquifer is not horizontal 

and also where 
4 - the density varies (chapter 4). 

Inflow or outflow occurs due to wells, line-sinks, canals (see figures 3.4.2. a 
and b) and area-sinks (subsection 3.4.1). Of all Stracks analytic elements, 
only area-sinks can be defined on top or at the bottom of the aquifer. The 
other types of elements are defined as fully penetrating elements. In the 
computation of streamlines, Strack assumed that the sink elements 
withdraw (or infiltrate) water from (to) the upper part of the aquifer. The 
vertical flow velocity inside the line-sink is derived as described for the area-
sink in subsection 3.4.1. At the abstracting line-sink (figure 3.4.2 a), the 
streamlines jump upward, the jump itself decreasing with depth. Below the 
area-sink (figure 3.4.2 b), the streamlines bend in upward direction with the 
vertical flow velocity increasing in upward direction. 

In phreatic aquifers, the vertical displacement concentrates at leaky walls 
and changes at boundaries of inhomogeneities (figures 3.4.2 c and d). The 
streamlines jump at the leaky wall and change direction at the boundary of 
the inhomogeneity. The vertical jump in the flow inside the leaky wall 
decreases with depth (as a consequence of the impermeable base). 
Inhomogeneities generating a change in the base cause vertical 
displacements in both confined and phreatic aquifers (figures 3.4.2 e and 1). 
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The semi-three-dimensional analytic elements can be combined with 
fully three-dimensional analytic elements e.g. for partially penetrating wells 
and line-sinks (Haitjema, 1985) or three-dimensional ellipsoidal 
inhomogeneities (Fitts, 1991). 
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Figure 3.4.2 	Schematic examples of causes of vertical flow in a model 
of analytic elements. 

Stracks technique can account for velocity differences along the vertical 
axes, which are induced via the discharge potential. In an aquifer with 
vertical variation in the horizontal hydraulic conductivity (subsection 3.2.2), 
the horizontal flow velocity is uniformly distributed within each 
distinguished layer but is different per layer. In such an aquifer, the vertical 
velocity is determined from continuity of flow and is linearly distributed 
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within the layers. In aquifers with varying density (sub-section 4.2.4), the 
flow becomes really three-dimensional. 

3.5 Computational aspects 

In a model with analytic elements, the strengths of some elements are 
specified but the strengths of others are to be computed. For this 
computation, Strack developed a specific solution technique. 

3.5.1 The solution technique for models with only elements with 
specified strength 

In an AEM model, the mathematical functions describing the analytic 
elements are solutions of the differential equation (3.10). The functions are 
superimposed to arrive at a solution. The model is said to be solved when 
the strengths of all elements are known. Then, the value of any variable at 
any position can be computed simply by superposition of the effects of the 
functions of all elements in the model. Next, this will be illustrated. 

Each element is described by a linear relation between the strength and the 
corresponding potential distribution (section 3.3). The general expression 
for the potential in observation point P n, generated by analytic element j is: 

m, 	SF 	*5(j) 	
refj — - 	m,j 

	 (3.37) 

where: 

m,j = the potential in observation point P m , generated by element 
[L3 /T] 

SFm1  = shape function (In(r); 1/r; etc) of elementj, function of the 
distance to point P m  [1 

Si 	= strength of element j [L 3 /T1 
ref = 	potential at the reference point 1 ref [L3 /T1 

Superposition of all elements leads to the potential 

j=J 
(Dm = 	{ SF m,j * 5(j) } + 	 (3.38) 

j=1 

where: 
Om  = the potential in an observation point P m  generated by all 

elements j in the model [L 3 /T] 

Expression (3.38) describes the system of equations that is used to illustrate 
the solution technique of the AEM. 

In this case, all strengths are prescribed (Neumann condition) so the model 
is solved already, assuming that the potential in the reference point is 
specified. Some of the 1 functions, as presented in section 3.3, become 
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rather complicated, when they are formulated in expressions that can be 
handled by a computer. The computation of the shape functions SF mj , 
appears to demand much computation time in models with a large number 
of elements. Also, computation effort is needed to determine whether the 
observed point is inside each of the elements or not. This shows up in the 
computation time needed for a grid of heads that is needed to draw 
contour lines. 

3.5.2 Solution technique for a model of elements with both specified 
and unknown strengths 

In a general model, not all the strengths of the analytic elements in a 
model will be known. In rivers, lakes, etc. a certain surface-water level is 
known but the corresponding fluxes are unknown. In such a case, the 
strengths of the analytic elements have to be computed. Corresponding to 
each of these unknown strengths a head or surface water level (Dirichlet 
condition), sometimes in combination with a resistance (Cauchy condition) 
must be specified (see section 3.3). 

A problem formulated in terms of elements with only given potential values 
(derived from specified heads using e.g. (3.8) or (3.9) ), leads to the 
following set of equations (compare (3.38)): 

(1)(1) = SF(1,1)*S(1) + SF(1,2)*S(2) + .... + SF(1,M)*S(M) + 1 ref 
(2) = SF(2,1)S(1) + SF(2,2)S(2) + .... + SF(2,M)*S(M) + ref 

(t(M)' SF(M,1)*S(1) + SF(M,2)*S(2) + .... + SF(M,M)*S(M)+ ref 

In matrix notation, this becomes: 

= SF * S + ref 
	 (3.39) 

which is a well-known set of equations, for which many solution techniques 
exist. Once the set is solved, the strengths are known and the problem is 
reduced to a problem as described in section 3.5.1. 

In a case with elements of both given and non-given strengths, the number 
of equations in the matrix remains equal to the number of elements with 
non-given strength (assuming that the potential in the reference point is 
specified). The elements with given strength are included in the matrix 1. In 
1, the potential values induced by all given strength elements in the centres 
of the non-given strength elements are accounted for. 

3.5.3 Dealing with coupled aquifers 

The matrix equation (3.39) holds for a single aquifer. In a multi-aquifer 
model, leakage elements are used (see subsection 3.3.8). This leads to 
differences with the finite element and finite difference techniques in the 
contents of the matrix of the shape functions. 
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In the hypothetical situation of a problem of two aquifers without 
connection, the matrix equation reads: 

	

I 	I 	 I 	I 
I 	I 	I 	SF 	0 	I 	I 	S 

	

I (aq 1) I 	I (aq 1) 	 I 	I 	(aq 1) 
I 	I 	I 	 I 	I 
I 	1=1 	 1*1 
I 	I 	I 	 I 	I 
I 	I 	I 	0 	SF 	I 	I 	S 

	

I (aq 2) I 	I (aq 2) 	 I 	I 	(aq 2) 
I 	 I 	I 

In the matrix of shape coefficients (containing the SF blocks) two fields 
with value zero (0) exist. 

The leakage area-sinks connecting the aquifers, cause non-zero coefficients 
in these zero fields. These coefficients are symmetrically distributed along 
the upper-left-lower-right diagonal. Instead of the zero parts (0), the 
matrix contains the connection coefficients (CC), which describe the 
connection between both aquifers and arise from the equations for the 
leakage area-sinks: 

	

I 	I 	 I 	I 	 I 
I 	I 	I 	SF 	CC 	I 	I 	S 	I 

	

I (aq 1)1 	I (aq 1) 	aq(1&2) I 	I 	(aq 1) 	I 
I 	I 	I 	 I 	I 	 I 
I 	1= 	 *1 	 I 

	

I 	I 	 I 	I 	 I 
I 	I 	I 	CC 	SF 	I 	I 	S 	I 

	

I (aq 2)1 	I (aq 2&1) 	(aq 2) 	I 	I 	(aq 2) 	I 

	

I 	I 	 I 

where 
CC = the block containing the connection coefficients. 

A problem of three or more aquifers can be treated in the same way. This 
can lead to a rather large matrix, which is not a band matrix, but it can 
easily be reduced in size. The matrix containing SF and CC is positive 
definit. Wassyng (1982) introduced a method to reduce this type of matrix 
to about a quarter of its size, without relevant loss or gain in computation 
time. This means that the size of the matrix to be solved is reduced with a 
factor four. 
In a model with a large number of non-given elements, the computation of 
the inverse matrix needs much less time than the computation of the 
coefficients in the matrix. The need for numbercrunching computers is 
caused by the complicated shape functions, and not by the matrix 
inversion, which is opposite to what occurs when using other techniques. 
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4. THE STATE OF THE ART OF THE ANALYTIC ELEMENT 
TECHNIQUE FOR THE MODELING OF LARGE 
DOMAINS 

4.0 Summary 

In this chapter, the state of the art (march 1995) of Strack's AEM is 
described. The developments since 1992 consist of curved-line elements, 
area-sinks simulating the exact vertical leakage near an abstraction well, 
area-sinks with variable vertical flow and an extension of the discharge 
potential for density driven groundwater flow. These new developments 
are summarized with their present level of experience. Some of the 
developments expected in the near future are discussed and the remaining 
items needed in NAGROM are indicated. The expected capabilities of the 
AEM with respect to groundwater quality modeling are considered. 

4.1 	Introduction 

Since 1989 several new extensions of the AEM have been developed and 
implemented that became available later than 1992. Because the chapters 
3 and 5 have been conceived in 1992, these developments are only 
summarized here; they are not analyzed in chapter 5. For some of the 
developments the theory already existed in 1989 and for others a new 
theory had to be developed. Many of these developments were primarily 
initiated for NAGROM by the author and have been carried out by Strack. 

In 1989, the primary needs for NAGROM with respect to the AEM 
concerned accounting for variable density, anisotropy, enclosures in 
aquifers, variation in the leakage near wells and for sloping layers. After 
several years (1 989-1995) of development, most of these needs are 
satisfied: 
- 	Anisostropy in the horizontal plane and enclosures in aquifers have 

successfully (section 5.2) been modeled in aquifers using curvilinear 
elements (subsection 4.2.2). 

- 	The variation in the vertical flow through separating layers near wells 
can be modeled exactly with so-called Bessel area elements 
(subsection 4.2.3). 

- 	A theory for variable density has been developed and elegantly 
implemented. It has been applied extensively in the coastal area of the 
Netherlands (subsection 4.2.4). 

- 	In a large part of the Netherlands, sloping layers can be modeled 
using inhomogeneities as long as the model is used mainly for analysis 
of groundwater quantity. The need for an AEM tool for sloping layers 
still exists (1995) especially for situations with phreatic flow. 

Because the computation effort needed for NAGROM has increased 
considerably, a new computation procedure will be introduced which has 
been developed partly (1995). In this approach, the model area is 
subdivided in so-called superblocks (subsection 4.2.6 and section 4.4). The 
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present version of NAG ROM has primarily been developed for scenarios 
concerning groundwater quantity. Because the experience with the AEM 
for use in studies on groundwater quality is limited yet, only a short 
discussion is given of the expected capabilities of the technique. 

4.2 	The main developments for modeling of large domains in 1993 
and 1994 

4.2.1 Minor and not applied developments 

The resistance in the Cauchy boundary condition (3.35) may depend on 
the head in the regional aquifer. For instance, the value may change when 
a part of the surface waters in an area falls dry. Therefore, the line-sink 
elements (for individual surface waters) and the area-sink elements (for 
lumped surface waters) have been implemented with a resistance value 
depending on the head in the regional aquifer, which are called multi-
resistance area-sinks. 

In 1991, Strack developed a doublet to simulate anisotropic 
inhomogeneities. The anisotropic behaviour was introduced by using the 
well-known transformation along the principal axes in the horizontal plane 
inside the inhomogeneity. This worked well for solitary inhomogeneities 
but the connection between inhomogeneities with different anisotropic 
properties appeared to be difficult. In the mean time, a practical solution 
was found by the author (see subsection 5.2.5) based on the application of 
curved line-elements (subsection 4.2.2) of type leaky wall. By finding this 
solution, the urgency disappeared and time came available to find a more 
fundamental solution to include anisotropy. 

4.2.2 Curvilinear elements 

The theory of curved line-elements or curvilinear elements existed several 
years (Strack (1986)) before the implementation in the AEM. 

Curvilinear elements have been developed for the same types as the 
existing straight line elements described in chapter 3. Curvilinear elements 
consist of segments which are parts of hyperbolas. The segments can be 
chained to form open or closed curves. At the beginning and at the end of 
an open curvilinear element, Strack implemented straight segments to 
contain the function for the singularity similar to that in the case of the 
straight line-dipole elements in subsection 3.3.4. Closed curvilinear 
elements do not contain these functions. 

The theory of curvilinear elements is based on the thought that the 
distribution function for the strength (jj in (3.25), 5dip in (3.29), dou in 
(3.30) or jh  in (3.31) ) can be defined along any line as long as a real 
function can be defined along that line (Strack, 1986). Along a streamline 
such a real function can be found. Strack (1986) considered the flow in 
corners with angles of 90 degrees (figure 4.1). The streamlines in this case 
have the form of hyperbolas. 
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Figure 4.1 	Flownet in corners with angles of 90 degrees, used for the 
shapes of curvilinear elements (from Strack, 1986). 

As an example, the specification of a curvilinear element composed of two 
curved and two straight segments is presented in figure 4.2. Each 
hyperbolic segment is specified by its two nodal points (tips of the 
segment) and by an anchor point (point of intersection of the tangents at 
the tips). The end segments are only defined by two nodal points, because 
they are straight lines. In the case of a closed curvilinear element the 
singular behaviour is not needed and there are no end segments. 

Figure 4.2 	Definition of a composed curvilinear element 

Continuity of the strength and its derivative at the connection of two 
segments requires that the tangents of both curves are equal there. 
Therefore, each anchor point should be on a straight line with the adjacent 
points in each direction. A curvilinear element may exist of relatively long 
and short segments. However, they should be connected via segments of 
which the length changes gradually. The conditions at the nodal points and 
the hyperbolical shape of the element lead to a sixth order polynomial 
function for the strength distribution. 

The main advantages of curvilinear elements over straight line-elements 
are that they can account better for differences in the flux and head 
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distributions in the elements. This is the case because the form and length 
of the segments is flexible while the strength distribution is of an order 
higher than one. An example of the difference between straight and 
curvilinear elements can be found in figure 5.3.7 (subsection 5.3.2). 

Other advantages of curvilinear elements are that they are developed to be 
chained, even segments of different type (e.g. line-sink type segments and 
leaky wall type segments) 

The main modeling experience (by the author in 1995) with curvilinear 
elements concerns the type of the leaky wall. Curvilinear leaky walls have 
been used to close an aquifer partly as well as completely over both short 
and long distances. These elements have also been used to generate 
anisotropy in models of large domains, which approach will be discussed in 
subsection 5.2.5. 

4.2.3 Area-sinks to model the vertical flow through separating layers 
near a well 

The vertical flow through a separating layer near a well varies strongly with 
the distance to the well. Many area-sinks with constant strength 
(subsection 3.3.7) should be needed to model this variation. Each of these 
elements should have the properties of the area it covers. By this, local 
details might have to be included which do not belong to the scale of a 
model of a large domain (chapter 8). By using Bessel-area-elements 
(Strack, 1991 a), the vertical flow near a well can be modeled accurately 
using elements with sizes that belong to the scale of models of large 
domains. In figure 5.3.4 in subsection 5.3.2, an example of the effect of a 
Bessel-area-element is presented. 

A Bessel-area-element consists of one or more area-sinks bounded by one 
polygon and with given but in-place-varying strengths. The strengths of 
the area-sinks are determined by the properties of the aquifers and 
aquitards within the polygon and by the positions and the abstraction rates 
of the wells which have to be accounted for. In general, a Bessel-area-
element is used in combination with leakage area-sinks (subsection 3.3.8). 

The basic principles of the Bessel-area-element are rather straight forward, 
but the actual implementation in a computer code especially of the 
polygonal boundary appeared to be complex (Strack, 1991 a). 

The discharge potential t in the case of flow to a well in a single semi-
confined aquifer can be described by a modified Bessel function of order 
zero multiplied by a constant (Strack 1989, pp. 165-167). 

= Ow K0(r/)Q * X / { 2 it r * K1(r/2)} 	 (4.1) 

where 
Qw  = the abstraction rate of the well 11 3 /T1 
rw  = well radius [L] 
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= I(kHc), characteristic length [L] 
kH = transmissivity of the aquifer [L 2/TI 
c 	= resistance of the separating layer [T] 
and K00, K 1 () are modified Bessel functions of the second kind and of 
order zero and one respectively (Abramowitz & Stegun, 1965). 

width of Bessel element 

ow 

- surface water level 

/ separating layer 1 

2 Bessel-area-sinks 

aquifer 1 

2 Bessel-area-sinks 

/ Iseparating layer 2 

2 Bessel-area-sinks 

aquifer 2 

>< impermeable base 

JI[ flux through separating layer, generated at each aquifer-aeparation layer boundary 

Figure 4.3 	Scheme of area-sinks in a Bessel-area-element 

The expression for the distribution of the strength y of the Bessel-area-
element is derived by combination of (4.1) and (3.10), which results in an 
expression with K0(r/X). For different wells superposition is applied within 
each Bessel-area-element. In equation (4.1) only the geohydrologic 
properties (kH and c) and the abstraction rate of the well are used. So, the 
strength is independent of the fluxes generated by the other elements 
(area-sinks, line-sinks, etc.) in the model. In fact, the Bessel-area-element 
can be seen as a correction" element, that accounts for the non-constant 
distribution of the vertical flow near a well while the interaction between 
the actual flow in the model at that place is accomplished by the common 
constant-strength area-sinks. 

A complete Bessel-area-element may consist of many area-sinks (figure 
4.3). The vertical flow through each separating layer except the top layer is 
simulated by a specific combination of Bessel area-sinks at both sides. The 
vertical flow through the top layer is simulated by a specific combination of 
Bessel area-sinks at its lower side only. The number of elements depends 
on the number of separating layers. The elements are defined at each 
boundary between an aquifer and a separating layer. In a model with two 
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aquifers of which the upper one is semi-confined (figure 4.3), two Bessel 
elements form each specific (per layer) combination of Bessel area-sinks 
mentioned above and a total number of 6 Bessel elements is needed to 
simulate the vertical flow. 

In a model of three aquifers of which the upper one is semi-confined, each 
specific combination of Bessel area-sinks needs 3 Bessel elements and there 
are 5 sides at which these combinations should be defined, so the total 
number of Bessel elements becomes 15. In a four aquifer model, this 
number grows to 28. In this, it is assumed that the geohydrologic 
properties in the observed area are constant. For each area with different 
geohydrologic properties, the same number of area-sinks should be 
specified. 

Based on the theory of Strack (1989, pp 172-192), the vertical flow 
through the separating layers in a multi-aquifer system can be simulated by 
a specific combination of Bessel area-sinks in all aquifers with the same 
shape. In such a combination, the geohydrologic properties of all aquifers 
and separating layers at the location of the Bessel-area-element are 
included. These geohydrologic properties should be constant inside the 
polygon. A Bessel-area-element can account for the effects of a number of 
wells at different locations with different abstraction rates. 

If the aim is to generate only a first order correction in the vertical flux 
through the separating layers near a well (e.g. in the case of a model for 
groundwater quantity), the number of area-sinks can often be reduced. 
Then, the need to use a area-sink in a complete Bessel-area-element 
depends on its effect on the flux and head distribution in the aquifer. The 
area-sinks with relatively small effect might be left out. From the authors 
experiences, it appears that in a model for quantitative problems, the 
correction can often be modeled using less Bessel area-sinks than needed 
to simulate the vertical flow near the well exactly. 

By using the complete Bessel-area-element in a multi-layer model, the flux 
distribution near the well becomes three-dimensionally exact. Also, partially 
penetrating wells can be modeled by separating the pumped aquifer into 
two aquifers connected by leakage area-sinks and Bessel-area-elements. 

The element has been used (see subsection 5.3.2) in models of large 
domains in situations where the sizes of Cauchy area-sinks are much larger 
than 2c or where the effect of the well on the flux computed at the control 
point of the Cauchy area-sink is large. 

58 



4.2.4 Implementation of variable density 

In the coastal zones of the Netherlands, the density of the groundwater 
varies mainly as a result of the variation in the salinity. The variation of the 
density affects the groundwater flow in horizontal direction as well as in 
vertical direction. The density variation has to be included in the model of 
this area, because it causes significant effects on the groundwater flow. 
The classical approach with a sharp interface (see e.g. De Lange, 1986) is 
not appropriate, because the density varies gradually and not abruptly in 
the inland part of the Dutch coastal zone. 

Maas and Emke (1989) presented an approach to include density variation 
in a (finite difference) computer program, in which actually only a single 
density can be defined. They implemented a source term in each element, 
that generates a correction for the density variation in the element. At the 
same time, Kontis and Mandle (1988) developed a similar approach in the 
USA. Strack 0 991 b) changed the approach of Maas and Emke (1989) to a 
new theory for variable density flow in terms of the discharge potential. 
The following presentation of the theory is mainly based on Strack (1992, 
oral presentation). 

Variation in the density is not accounted for by a new type of analytic 
element but it is implemented via the discharge potential, similarly to the 
way it is described in subsection 3.2.2 for the sharp interface approach. 

In a situation of groundwater with variable density, Darcys law and the 
law of continuity can be described in terms of pressure (see e.g. Verruijt, 
1982). By defining the hydraulic conductivity and the groundwater head in 
the regional aquifer in terms of the fresh water density, Darcys law can be 
rewritten as (compare Diersch, 1988): 

q.= - k(p) 	 (4.2a) 
dx 

dp(p) = - k(p) 	 (4.2b) 
ay 

= - kZ (pf) { dpi) + vi) 	 (4.2c) az 

where: 
i 	= unit vector in vertical direction [-] 
k(p) 	= hydraulic conductivity in terms of p f  in x-direction [LIT] 
k(p) 	= hydraulic conductivity in terms of Pt  in y-direction [LIT] 
k(p) 	= hydraulic conductivity in terms of p f  in z-direction [LIT] 
q < 	= specific discharge in x direction [LIT] (varying in x,y,z direction) 



q y  = specific discharge in y direction [LIT] (varying in x,y,z direction) 
q 	= specific discharge in z direction [L/T] (varying in x,y,z direction) 
Ø(p f)= groundwater head in terms of pf [T] (varying in z direction) 
p 	= density, varying with place [M/L 3 ] 
p f  = fresh water density [M/L 3 ] 
v 	= relative density (p Pf) / Pt [-I 

In the Dupuit-Forchheimer assumption, k(p) approaches infinity and q z  is 
a non-zero real value, so the expression between accolades in equation 
(4.2c) should approach zero. From this latter, the following expression for 
the head (p(p) can be derived: 

Z 
(p(p) = - S v(z) dz + Pzret(Pt) 	 (43) 

Z r  

where: 

PZref(Pf) = groundwater head at reference level in terms of fresh water 
density [L] 

Z 	= observation level [L] 
Z ret 	= level of reference plane [U 

An expression for the total flux in the directions x and y is derived by 
integration of Darcys law (4.2) over the thickness of the aquifer. Using the 
definition of the discharge potential c1 in (3.5), Strack derived the following 
expression. 

zt  
= k(p)Sp(p)d z+ * 	 (4.4) 

Zb 

where W is a parameter which expresses the effect of the head distribution 
along the upper boundary Z t  and along the lower boundary Zb  of the 
aquifer. This parameter is constant in the case of flow in a (semi-)confined 
aquifer with piecewise horizontal upper and lower boundaries. Expressions 
can also be found for 	in the case with the phreatic surface as the upper 
boundary and with a sharp interface as the lower boundary (Strack, 
1991 b). In the case of flow in an aquifer with both the upper and lower 
boundary being horizontal, the discharge potential in (4.4) becomes: 

Zt 
1 = k(pp(p,Z) Z-k(p f)p(pf ,Z) Zb + k(p f) S v(z) z dz 	(4.5) 

Zb 

From (4.5) it can be concluded that the discharge potential can be 
analytically determined, if the distribution of v can be expressed by a 
continuous analytic function. In Stracks AEM, the distribution of v is 
implemented using a three-dimensional continuous distribution function 
based on the so-called multiquadric-biharmonic (MQ) method (Hardy, 
1990), which reads: 
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M 

v(x,y,z) = v0  + am  ([( m ) 2 + (YYrn)2 ]Escae2  + (ZZm)2 + A2} 	(4.6) 
m=1 

in combination with the condition: 

M 

a=O 
	

(4.7) 
m=1 

where the constants a m  (m = 1 ,M) and v 0  are to be computed from the 
condition that in the points of measurement (Xm,Ym,Zm) the computed 
relative density complies with the measured density. The scale parameter 
Esca l e  accounts for the different order of magnitude between vertical and 
horizontal distances in the aquifer. The parameter A can be used to smooth 
the distribution, but should be equal to zero appearing from modeling 
practice. The MQ behaves reliable and predictable and it can be integrated 
for use in (4.5). 

This theory has been verified with two analytic solutions for flow in a 
vertical plane by Bakker (1991). The particular case of flow across a jump 
in the transmissivity in groundwater with varying density has been studied 
in detail by Strack (1992a). For this case, a solution has been found in 
which the flow across the boundary of the inhomogeneity approaches the 
exact flow very well. All other analytic elements could be used directly in 
combination with the new discharge potential of (4.5). 

The modeling with density-driven flow in the AEM goes as follows. By 
using the MO, a continuous three-dimensional distribution of v is 
interpolated based on a set of three-dimensional, arbitrary-distributed data. 
In the next step, the discharge potentials (4.5) are computed at the control 
points of all analytic elements in the model, using boundary conditions in 
which the density is accounted for. After this, the solution is available in 
terms of the discharge potential. Then, the two-dimensional distribution of 
the discharge potential and the three-dimensional MO distribution of the 
density are used to compute the pressure, the head in terms of p, the 
velocity in three dimensions, etc. in any point in the model. 

The main advantages of the approach presented here are (1) the 
combination of three-dimensional flow and Dupuit-Forchheimer flow 
which enables to use the classical modeling approach of aquifers and 
aquitards and (2) the absence of numerical dispersion in a model with 
three-dimensional variable density which enables to compute flow paths 
exactly in models of large domains. 

The experiences with models in which density-driven flow takes place has 
increased since 1993. The results of the NAGROM models of the northern 
and western coastal zone of the Netherlands have been reported in De 
Lange and Van der Meij (1994). 
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In modeling practice, the interpolation of three-dimensional density data 
based on real data appears to be the most difficult step in the modeling 
process, mainly because of the lack of knowledge of the real situation. The 
interpolation should be optimized with respect to the effects of the density 
variation on the groundwater flow. 

The effects of the density variation in terms of fresh water heads grow 
with depth in areas with relatively high density. The effects of the density 
variation in terms of horizontal flow can be determined from the difference 
between the gradients in the freshwater head at a certain elevation in a 
model with variable density and in the same model with constant density. 
This follows directly from (4.2a), (4.2b) and Darcys law for fresh water 
flow. The effects on the flow in vertical direction can also be determined 
using (4.2c) and Darcys law. In terms of velocities, the effects of density 
variation appear to be relatively large in many areas in the coastal zone. 
The effects in the models of the coastal zone of the Netherlands show that 
the specific discharge may be strongly different in its direction (even flow 
in the opposite direction) and magnitude (up to a factor 1/3 or 3) from the 
discharge in a model with constant density. 

Changes of the density distribution over time can be simulated by shifting 
the points of measurement (x,y,z) over a distance computed from the 
three-dimensional velocity vector at these points and a certain time step in 
which the velocity distribution is assumed to be valid. In the new situation 
the interpolation of the density is carried out again, the groundwater flow 
is computed and the new velocities lead to the next shift. Experiences with 
this approach are limited yet (1995), but are very promising. 

4.2.5 Area-sink with a variable strength distribution 

The area-sink with constant strength (subsection 3.3.8) is simple to use in 
modeling but may lead to unexpected modeling errors or to the need of 
many relatively small elements in a model of a large domain (section 5.3). 
The variation of the vertical fluxes in reality can better be modeled by 
using a more sophisticated strength distribution. Strack (1992b) suggested 
the application of a modified version of the MQ (expression (4.6)) as 
distribution function for the strength of an area-sink. Strack (1993) 
suggested to use multi-logarithmic distributions rather than the modified 
MQ, because then the theory becomes more convenient for the 
implementation in the computer code. This element has been developed in 
1994 and is called log-area-sink. It consists of an area bounded by a 
polygon in which the conditions are specified in several arbitrary situated 
control points. The strength (vertical flux) throughout the entire area-sink 
is defined by a multi-logarithmic distribution, which means that the 
strength is a combination of logarithmic functions. In the case of using the 
logarithmic distribution function, A has a similar meaning as in expression 
(4.6), but is omitted (A = 0). In each element, the type of boundary 
condition at the control points can be one of the types of boundary 
conditions that is defined for the constant strength area-sink (subsections 
3.3.7 and 3.3.8). In Stracks implementation the value of each parameter in 



the boundary condition at a control point can be computed automatically 
from a predefined distribution. This predefined distribution is a MQ 
interpolation of the values specified in arbitrary situated points which for 
instance may be selected from a geohydrologic database. 

As a test, the author used the log-area-sink to model the Mazure case 
(figure 5.2.10-a). Excellent agreement between the results of expression 
(5.12) (and its derivatives) and the computation results has been found in 
terms of the heads (and the horizontal and vertical fluxes) by using A 
(expression (4.6)) equal to 2L (expression (4.1)). The dependency of A on X 
causes that the specification of the area-sink becomes complex, because c 
(expression 4.1) and therefore ? is not constant within the element. Also, ? 
becomes complex in multi-aquifer models (Strack 1989a, pp.  172-176). To 
avoid this place dependent behaviour of the area-sink, the MQ distribution 
function (with A = 0) will be implemented also. After that implementation, 
tests will show which of the two distribution functions will be most 
favourable. 

4.2.6 Reduction of needed computation effort (part 1); the superbiock 
approach 

Models of large domains such as they have been developed in the 
Netherlands (De Lange and Van der Meij, 1994) require considerable 
computing power. Combinations of such models and refinements in these 
models lead to an even greater required computing power. Therefore, 
Strack (1992c) developed an approach to decrease this requirement and by 
which these models can be used more flexible. 

In this approach, the model is subdivided into squares in the horizontal 
plane the so-called super-blocks. In a computation, all analytic elements in 
each super-block are used as usual, but the effects of all analytic elements 
outside the super-block are included in a Taylor series expanded around the 
centre of the superblock. This means that for the computation of the head 
or the flux in a certain point within the super-block only a few elements 
and the Taylor series (which is computationally similar to including just one 
other element) are needed. So, instead of using several hundreds or 
thousands of elements in an aquifer in the computation of each point in a 
grid of heads, only several tens of elements are used. 

During the first step in the development of the super-block approach 
(1993), the existing solution method is used to compute the unknown 
strengths (section 3.5). The coefficients in the Taylor series are determined 
from this solution in a second computation. In general, the time needed for 
the computation of a grid of heads after this step is reduced to about the 
time needed for a model that contains the average number of elements in 
a superblock. 

The second step (future in 1995) in the development of superblocks will be 
described in section 4.4. 
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4.3 	An overview of the capabilities of the analytic element technique 
(march 1995) 

Because the number of types of analytic elements and the number of 
applications of the discharge potential have become considerably large, an 
overview of the most important applicabilities is given. 

4.3.1 Available analytic elements (march 1995) 

In table 4.1, an overview is presented of the analytic elements available in 
1995. The elements have been explained in sections 3.3 and 4.2. The point 
elements and the elements generating changes in areas are presented in 
part a of table 4.1. The available straight line elements in part b of table 
4.1 are distinguished from the curved line elements in part c. 

The strength distribution of the Bessel element (based on modified Bessel 
functions) has been discussed in subsection 4.2.3. The application of 
Laurent expansions in the definition of the strength has been discussed in 
subsection 3.3.4. 

The curvilinear elements are curved versions of straight elements except 
the Qdrain, which is a drain additionally specified by its total strength 
[L3 /T]. 

Table 4.1 Analytic elements available in 1995 

a) non-line elements 

NAME of specified strength shape and place 
analytic element condition distribution in aquifer 

Well (point-sink) head, or point point, fully penetrating 
strength 

Area-sink strength, or constant quadrangle on 
resistance, or top or at bottom 
(multi-)resistance of aquifer 
+ head 

Bessel area-sink 	strength modified-Bessel polygon on top or at 
functions bottom of aquifer 

Logarithmic- 	strength, or combination of polygon on top 
area-sink 	resistance, or logarithmic top or at bottom 

(multi-)resistance functions of aquifer 
+ head 

Inhomogeneity 	jump in hydraulic 	second order 	polygon, fully 
(doublet) 	conductivity, 	per segment 	penetrating 

thickness, base 
and I or porosity 
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b) straight-line elements 

NAME of specified strength shape and place 
analytic element condition distribution in aquifer 

Line-sink head, or constant, or straight, fully 
strength or linear per penetrating 
(multD-resistance segment 
+ head 

Leaky wall (line- resistance Laurent straight, fully 
dipole with expansion penetrating 
double-root) 

Impermeable wall (infinite resistance) Laurent straight, fully 
(see leaky wall) expansion penetrating 

Crack (see transmissivity Laurent straight, fully 
leaky wall) expansion penetrating 

Drain (see (infinite Laurent straight, fully 
leaky wall) transmissivity) expansion penetrating 

Canal (see head (and infinite Laurent straight, and 
leaky wall) transmissivity) expansion fully penetrating 

C) curved-line elements 

NAME of specified strength shape and place 
analytic element condition distribution in aquifer 

Line-sink head, or 6th order curved, fully 
(curvilinear) strength or penetrating 

(multi) - resistance 
+ head 

Leaky wall resistance 6th order curved, fully 
(curvilinear) penetrating 

Impermeable wall (infinite resistance) 6th order curved, fully 
(curvilinear) penetrating 

Crack transmissivity 6th order curved, fully 
(curvilinear) penetrating 

Drain (infinite 6th order curved, fully 
(curvilinear) transmissivity) penetrating 

Qdrain flux of entire 6th order curved, fully 
(curvilinear) element penetrating 

Canal head 6th order curved, fully 
(curvilinear) penetrating 

4.3.2 	Available modeling features due to the discharge potential 

It has been presented in sections 3.2 and 4.2, that the discharge potential 
may account for several (solid and fluid) properties that are valid in the 
entire aquifer. Once the discharge potential is determined in which a 
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certain property can be included, all analytic elements can be used in that 
situation because they are all expressed in terms of the discharge 
potential. Therefore, the capability of the AEM to deal with aquifer-wide 
properties due to the discharge potential is presented separately in table 
4.2. 

In principle, all versions of the discharge potential can be combined, 
except (as foreseen in 1995) the solution for the anisotropy. Strack 
(1989a) shows some examples. At this moment most of the extended 
applications of the discharge potential are implemented in different 
special versions of the AEM computer code. The horizontal and 
impermeable laminae and the stepwise vertically varying hydraulic 
conductivity are not implemented yet in the multi-layer version. 

Table 4.2. Properties accounted for by the discharge potential in 1995. 

Description 

confined and unconfined flow 
vertically varying horizontal hydraulic conductivity 
horizontal impermeable laminae 
sharp interface, salt water stagnant 
sharp interface, salt water flowing 
3-d variation in density 
sloping base / horizontal anisotropy 
transient flow 

4.4 	Expected developments 

Status 

fully available 
available for single aquifer models 
available for single aquifer models 
prototype, tested 
theory 
fully available, partly in development 
theory 
theory 

Reduction of required computation effort (part 2); the superblock-solve 
approach 

In the next step (see part 1, subsection 4.2.6) of the development of the 
superblock approach (foreseen in 1996), a solution method based on the 
superblocks will be developed. This means, that for each superblock a set 
of equations and unknowns is set up, by which the interaction is 
described between all analytic elements in the superblock and the Taylor 
series expressing the elements outside the superblock. After this, the 
solution will be performed superblock after superblock by using some 
kind of a Gauss-Seidel procedure. 

After the solution, each superblock contains the complete solution for its 
area and it can be treated as a separate sub-model. The use of individual 
super-blocks, the possibility of subdividing super-blocks in smaller 
superblocks and other new applications are to be considered as 
potentially important advantages of the AEM technique. 

Area-sink with strength distribution for leakage near line-sinks 

The vertical flow through separating layers close to a straight line-sink 
differs strongly with the distance to the element. Strack (1992d) outlined 
the theory for a Bessel area element for vertical flow near (linear) line- 



sinks. It appears that the theory is largely similar to the theory for the 
Bessel element sketched in subsection 4.2.2. This element may become 
important for local models around streams. But to model streams the 
curvilinear line-sink may give the best results. The theory outlined by 
Strack may have to be extended for curvilinear line-sinks. 

Sloping base 

A sloping base in a phreatic aquifer affects directly the transmissivity and, 
therefore, affects the flux and head distribution. At present, this can only 
be modeled using inhomogeneities generating jumps in the base. Such 
base jumps appear to affect the flux and head distribution considerably in 
both the direction and magnitude by the direction of the segments across 
which the jump is generated and by the size of the base jump. Especially, a 
steep sloping base may demand many nested in homogeneities (see 
subsection 5.4.2) and may lead to complex models only because of the 
slope in the base (Verhagen, 1992). For the model of the very southern 
part of the Netherlands, a solution to include a continuously sloping base is 
urgently needed, because too many small steps in the base are needed 
when using the available inhomogeneity element. 

Transient effects 

Transient effects have been considered to be of secondary importance to a 
groundwater model for national water management, because large 
amounts of data are needed and the computations may become very 
cumbersome. Also, for NAGROM as a part of PAWN (section 2.2) the 
transient effects are less important, because the connected model for the 
unsaturated zone MOZART (Arnold, 1995) accounts for the primary 
transient effects in the phreatic storage. 

However, it is important that transient effects can be included in models of 
small domains. The phreatic and elastic storage of aquifers will be included 
in the AEM for use in NAGROM in order to analyse the differences 
between results of computations with and without storage and for the use 
in a refined part of NAGROM. 

Zaadnoordijk (1988) has developed analytic elements for time dependent 
groundwater flow, which are not implemented in the Stracks AEM yet. 
Zaadnoordijks approach requires to keep track of the history of the 
boundary conditions over time. So, to compute a head or flux at a certain 
time, the boundary conditions in all previous periods must be used. 

Maas (1993, oral presentation) presented an approach to compute the 
response of the groundwater head to the variation in the recharge in terms 
of coefficients of a function. This approach is based on an impulse-
response relation similar to the expression for the unit-hydograph in 
surface water hydraulics. In this case, it is not necessary to compute the 
transient behaviour step by step. 



Strack (oral communication, 1995) developed a theory in which the 
behaviour of the groundwater in time is described analytically. The 
boundary conditions (heads in rivers, abstraction rates of wells, infiltration 
rates, etc.) will be described as analytic functions in time (e.g. Fourier 
series, delta functions, etc). The elastic or phreatic storage responds to 
these boundary conditions and will be simulated by variable-strength area-
sinks (subsection 4.2.5). The theory has been tested in a test situation and 
has to be extended further (1995). 

4.5 	Some remarks on the use of the AEM in the computation of 
groundwater quality 

In the Netherlands, experiments with the AEM concerning problems on 
groundwater quality have been restricted to the classical aspects of tracing 
and travel time. At present, the AEM can compute processes that are 
directly related to travel times along flow paths of a single pollutant, such 
as advection, linear decay and retardation. Diffusion and longitudinal 
dispersion are not implemented yet, but have been explored in 
experimental versions of the AEM at the University of Minnesota (e.g. 
Maas, 1994). 

In the AEM flow paths are computed without being affected by numerical 
dispersion due to element sizes or due to numerical differentiation of the 
head distribution. Also, in any volume (also (partly) inside elements) the 
water balance is perfect. This is in contrast to what happens in other 
techniques. 

The AEM can be used to compute flow paths in aquifers with variable 
density. Also, density differences caused by pollution can be included. 

When the module for transient effects is implemented, the AEM can 
account for the changes in the positions of particles over time which is the 
main source of horizontal transversal dispersion. 

Eventually, the AEM will provide an analytically exact simulation of 
transport of a solvent in groundwater flow. The path lines of particles will 
be determined exactly (analytically) in time and place and can be combined 
with analytical descriptions for the longitudinal mechanical dispersion, the 
transversal dispersion based on transient effects and the molecular 
diffusion. The possibility of an implementation of linear chemical reactions 
is being studied. 



5. PROPERTIES AND BEHAVIOUR OF ANALYTIC 
ELEMENTS IN MODELING 

5.0 Summary 

The properties and behaviour of the analytic elements implemented in 
the multi-aquifer version of the AEM (MLAEM) in 1992 are described 
with special attention to the interaction between elements. 

First, single elements are analyzed. The well, line-sink, canal and area-
sink generate flow and can be analyzed on their own. The 
inhomogeneity, leaky wall, impermeable wall, drain and crack do not 
generate flow by themselves. Therefore, they are analyzed in both a 
uniform and an axial-symmetric flow field. The analysis is focused on the 
distribution of the flow and the head in the vicinity of the elements. 

Second, all combinations of two elements in a single aquifer are 
analyzed. A qualification with respect to the complexity of each 
combination is presented in a table. 

Multi-aquifer models can lead to very complex combinations (De Lange 
and Van der Meij, 1994). A number of such combinations describing 
particular situations in the modeling of large domains is selected for the 
analysis. 

5.1 	Introduction 

A groundwater model consists of a well-chosen combination of analytic 
elements. In a model, all analytic elements together are acting and 
reacting. Analytic elements may be nested, linked, crossed etc. (see 
section 5.3). This freedom in the choice of elements enables to develop 
models in which the shape and the type of each element is closely 
related to the shape and the type of the natural geohydrologic features 
(rivers, polders, etc., section 3.1). The reverse side of this medal appears 
to be that the behaviour of a combination of elements is not always as 
expected by the user. Therefore, it is a prerequisite for analytic element 
modeling to understand both the behaviour of each type of element on 
its own and the main interactions between analytic elements. It is an aim 
of the entire chapter 5 to present the behaviour of analytic elements in 
such a way that the appropriate types of analytic element can be chosen 
for many combinations of different geohydrological features. 

In this chapter, the types of the analytic elements are dealt with in an 
order that a logical build up in the analysis. The names of the elements 
describe the modeling function in Stracks AEM programs, which are (cf. 
chapter 3): 
- 	the well (point-sink) 
- 	the line-sink 



- 	the area-sink 
- 	the inhomogeneity (connectable line-doublet) 
- 	the leaky wall and the impermeable wall (non-connectable line- 

doublet) 
- 	the canal, the crack and the drain (line-dipole) 

Section 5.2 starts with the analysis of the well, the line-sink, the canal 
and the area-sink each on its own. The effects of these elements on 
other elements are described using the distributions of the flux across 
lines nearby each element. The inhomogeneity, the leaky wall, the imper-
meable wall, the crack and the drain generate flow only in reaction to 
existing flow. Therefore, the effects of these elements are analyzed in 
two basic flow fields being a uniform flow field and an axial-symmetric 
flow field generated by a well. As an exception, the curvilinear element 
of type leaky wall (subsection 4.2.2) is included, because only with this 
type of curvilinear element the modeling experience has grown sufficien-
tly in 1992. This element is used in the analysis of a leaky wall in axial-
symmetric flow. The discussion of each type of element is completed 
with some particular aspects concerning its applicability. 

Based on the description of each individual element, the basic interac-
tions between all combinations of two analytic elements of the types 
mentioned above are analyzed in section 5.3. A main point of attention 
herein is the so-called physical error, which is due only to a wrong 
combination of analytic elements and does not occur in other techniques. 

The effects of interactions between more than two elements can often be 
deduced from the basic interactions between two types of elements. This 
is illustrated in the examples in section 5.4 which describe some combi-
nations that are of particular interest in modeling of large domains. In 
each example, the specification of the elements is improved (with respect 
to the accuracy) step by step. These steps actually illustrate the process 
of calibration with analytic elements. 

In multi-aquifer models of analytic elements, area-sinks of type leakage 
(subsection 3.3.8) are used to simulate the interaction between aquifers 
across separating layers. The transfer of the distribution of the flux in 
vertical direction by leakage area-sinks causes that the shapes of area-
sinks should preferably be equal in vertical direction. As an example, a 
two-aquifer model is analyzed to show the effects of different meshes of 
leakage area-sinks on the head distributions in both aquifers. 

Unless otherwise stated in the sections 5.3 and 5.4, the transmissivity in 
the examples is 2500 m2 /d with k = 50 m/d and H = 50 m, the 
surfacewater level p = lOm and the reference point is far outside the 
model area (x = 0 m, y = 10000 m) with a reference level of 0 m. 
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5.2 	Single analytic elements 

5.2.1 The well 

In figure 5.2.1, the flux distributions across lines in the vicinity of a well 
are shown. The relative lengths of the cross-lines express the distribution 
of the flux in normal direction to each of these lines, The lengths of the 
cross-lines perpendicular to the horizontal lines are mutually comparable 
as well as the lengths of the cross-lines perpendicular to the vertical lines 
are. However, the lengths of the lines perpendicular to the horizontal 
lines are not comparable to the lengths of the lines perpendicular to the 
vertical lines. The lengths of the cross-lines along line 2 are almost 
negligible compared to the cross-lines along line 1. The distribution along 
line 3 is much smoother than along line 1. The variation in the distribu-
tion along line 4 is almost negligible compared to that along line 3. It can 
be concluded from figure 5.2.1, that the peak in the flux should be 
accounted for by elements in the close vicinity of the well only and can 
be neglected for elements at a greater distance. 

/.. 

7 III  

bOOr,, 

kH = 2500 m2/d PweII = 10 m 	- 	
I =nrofline 

 35m= head 

Figure 5.2.1 	Distribution of the flux generated by a well across 
several lines of observation (see text). 

In fast, the distribution of the flux along each line in figure 5.2.1 represents 
th'effect (in terms of fluxes) of the well on an analytic element at the 
place of that line. The latter element may generate a reaction dependent 
on this effect e.g. a jump in the head generated by a leaky wall in reaction 
to flow generated by a well as shown in figure 5.3.7. This will be discussed 
further in section 5.3. The distribution of the flux may lead to define the 
distances between the control points or line-segments of the reacting 
element near the well. 

By combination of equations (3.2), (3.3), (3.19) and some basic 
goniometric expressions, the distribution of the flux across a line near a 
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well can be derived 

= Qa / 27tr2 , with r2  = a 2  + x2 	 (5.1) 

where: 
= distance between a point on the considered line and the well [L] 

aw  = distance between the considered line and the well [L] 
x 	= coordinate on the considered line with the origin at the point of 

projection of the well [L] 
= normal flux per unit length across the line [L3 /L.T1 

Qw  = abstraction rate of the well [L 3 /T] 

well 

Figure 5.2.2 	Scheme for the derivation of expression (5.1). 

In some situations, the distances between the control points or line-
segments of the reacting element near the well can be related to the 
point of inflexion of the flux distribution, which is at the place where the 
second derivative of Qn  equals zero. The second derivative (or the 
curvature) of Q r, is given by: 

d 2Q - 	aw - 3ax2 ) 
(5.2) 

dx2 	- Ti (a + x2 ) 3  

The point of inflexion of the flux distribution becomes: 

x = ahJ3 
	

(5.3) 

Between the two points of inflexion of figure 5.2.2, the flux distribution 
is convex and outside these points it is concave. Also, the changes in the 
flux between these points are stronger than outside. Therefore, these 
points are often used as segmentation points. In modeling practice, also 
other elements affect the flux across the line(-segment) and often the 
coordinate of the segmentation point is rounded off to x = a. 

The adaption of the distribution of line-segments of an element to the 
flux distribution generated by the well can be illustrated using an 
inhomogeneity. Because the parabolic strength distribution along each 
line-segment of an inhomogeneity can properly account for either the 
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convex or the concave part of the flux distribution, a control point 
between two line-segments of an inhomogeneity (subsection 3.3.6) might 
be defined at the point of inflexion. This will be explained further in 
subsection 5.3.2. 

Applicability 

In Stracks AEM, the well is defined as a fully penetrating well. Haitjema and 
Kraemer (1988) developed an analytic element generating fully three-
dimensional flow to a partially penetrating well, in a confined aquifer which 
might be, but is not yet implemented in Stracks computer programs. 

k H,2 
Hh 

H Bh 
_ 

H,2  

Figure 5.2.3 	Modeling a partially penetrating well by using an 
approximately circular inhomogeneity e.g. as presented 
in figure 5.2.15. 

A partially penetrating well (figure 5.2.3) can be simulated also by a 
combination of a well and an approximately circular inhomogeneity (e.g. 
figure 5.2.15). The parameters of the inhomogeneity can be found as 
follows. The inhomogeneity accounts for the length and depth of the 
partial penetration by a local jump in the base and in the top of the 
aquifer and for the radial resistance by a reduction of the local transmis-
sivity. The effect of the radial resistance in terms of the extra drawdown 
(compared to in the case of a fully penetrating well) of the head at the 
well boundary can be found in literature (e.g. CHO-TNO, 1964, p  82) 
and has the form of: 

PwpartiaI - Pw,fuii = 	 Q/21tkH 	 (5.4) 

where Pw.partiai  and Pw,fuII  are the heads at the well radius in the case of a 
partially respectively fully penetrating well [Li, F((p,e,H,r) [-] is a (not 
simple) function given in the reference, H is the thickness of the aquifer 
[L], 5w  length of the well screen [L], Ew  is the eccentricity of the well 
screen [L] (figure 5.2.3) and r  is the well radius [U. Assuming that the 
inhomogeneity (figure 5.2.3) is a circle around the well (in the horizontal 
plane) with radius rinh,  the lowering generated by the inhomogeneity 
can simply be found using expression (3.19). 

Pw,partiai - Pw,fuII = 2it 	k 

1 	

- 	
1 	

i In ( 
rlflh  
----- ) 	 (5.5) 

nh' h nh 	 w 
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where kl fl hH 0 h is the transmissivity inside the inhomogeneity [[2 /TI, rinh 
is the radius of the inhomogeneity [LI) and Ow,i,h  is the head at the well 
radius in the case with the inhomogeneity. By stating that the lowering 
generated by the inhomogeneity should account for the extra lowering 
needed to simulate the radial resistance, both formula's can be combined 
to an expression for kinhHinh. 

k lflhH lflh = kH / [1 +F(öW ,EW ,H,rW)/ln(r flh/rW ) I 	 (5.6) 

In general, partial penetration is of interest in local models only. For 
regional models, the effects of the partial penetration can often be 
neglected. In the latter models, often a single fully penetrating well is 
used even to simulate a field of partially penetrating wells. 

5.2.2 The line-sink 

The flux across a line parallel to and near a stand-alone line-sink 
generating a constant (or linearly) distributed flux is almost constant (or 
linear), except near the ends of the element (figure 5.2.4, line (1) ). 

The distribution of the flux across a line at a certain distance from a tip 
of the line-sink (figure 5.2.4, line (2) ) approaches that in the case of a 
well. The distribution is symmetric if the line of observation is parallel or 
perpendicular to the line-sink. At a large distance from the line-sink 
(figure 5.2.4 line (3) ), the head and flux distribution become more even 
similar to that in the case of a well. 

500 ,, 

kH = 2500 m2/d Pline-sink = W m 	 1 = nr of line 
hm = head 

Figure 5.2.4 	Distribution of flux generated by a line-sink across 
several lines. 

The head generated along such a line-sink is not constant (figure 5.2.5). 
Along the line-sink, the further away from the centre of the line-sink, the 
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more the head approaches the head generated by the other elements in 
the model or, in this case, the level at the reference point. 

head 

line-sink 

Figure 5.2.5 	Head distribution along line 1 parallel to a line-sink in 
figure 5.2.4. 

Similarly to the derivation of expression (3.24), the expression for the 
flux across a line at a certain distance of a line-sink can be found by 
integration of the effects of an infinite number of infinitesimal small wells 
with strength o 1 d6 along the line of the element. So, in the case of a 
line-sink (5.1) is reworked to: 

= olin a(ö) / [2rt r(6) 21 d6 	 (5.7) 

where Q is valid at a certain point along the considered line, G lin  is the 
strength of line- sink per unit length [L 3 /(L.T)I and a(s) and r() take the 
place of aw and r in expression (5.1) (figure 5.2.2). Defining the origin 0 
at the point of intersection in lengthened lines of the line-sink and the 
considered line, the solution of (5.7) is found by application of basic 
trigonometric functions and straight forward integration: 

(51in sin (A°) In 

[arctan (- 
2it 

62) - 2ycos A + y2  
62 - 2ycos A° + y2  

2 -ycos A° -arctan( 61-ycos_A0 

ysinA° 	ysinA° 
: 

where: 
A° = angle between line-sink and considered line [-I 
8 1 	= distance from origin 0 to farthest tip of line-sink [U 

82 = distance from origin 0 to closest tip of line-sink [L] 
y 	= distance from origin 0 to point of determination of Q [L] 

However, this expression does not lead to a simple solution of the point 
of inflexion. Therefore, the rule developed for the well in subsection 
5.2.1 is also used for lines near the tip of a line-sink, which means that 
the line-segments of an element close to that tip are as long as the 
distance between that tip and the element. 
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Applicability 

Haitjema and Kraemer (1988) presented also a solution for a partially 
penetrating line-sink. In principle, a partially penetrating line-sink can be 
simulated in a way similar to that presented for a partially penetrating 
well (figure 5.2.3), but the determination of the parameter values of the 
inhomogeneity becomes more complex. 

The canal 

At the tips of a canal, the double-root functions (subsection 3.3.4) 
generate more pronounced flow patterns than what occurs at the tip of 
the line-sink (figure 5.2.6, line 1). The flow at the tip of a canal 
approaches the flow a well even more than in the case of the line-sink. 
Contrary to the case of a line-sink, the strength of a canal varies along 
the element (figure 5.2.6, line 2) in such a way that it generates a 
constant head inside the element. In order to generate this constant 
head, the flux near the tips of the element is much stronger than in the 
middle. At some distance of the element the lines of equal head are 
smooth and the flux across a line (figure 5.2.6, line 3) is more evenly 
distributed similar to that in the case of the line-sink. 

"N 7om
----- 

l000m 

6 OM

1 =nraf line 
'N 	

6.0 m = head 

kH = 2500 m2/d Pcanal = 10 m 

Figure 5.2.6 	Distribution of flux across several lines generated by a 
canal 

The lines of equal groundwater head of 9.9 m in figure 5.2.6 indicate an 
almost constant head just outside the element. The difference between 
the constant head along the canal presented in figure 5.2.7 and the 
varying head along the line-sink of figure 5.2.5 is obvious. 
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Figure 5.2.7 	Head distribution along a line parallel to a canal similar 
to line (2) in figure 5.2.6. 

The derivation of an expression for the flow across a line in the vicinity of 
a canal is not straight forward, because the strength of the element is not 
constant. The line-segments or distances between control points of an 
element in the vicinity of a canal should be at most as great as in the 
case of the line-sink. 

Applicability 

A canal can be used to model a narrow surface water imposing a 
constant head along its entire length. A canal can also be used to model 
the strong groundwater flow around weirs in a surface water. 

5.2.3 The area-sink 

At a large distance from an area-sink, the head and flux distribution (line 
(1) in figure 5.2.8) become similar to those in case of the well . The flux 
distributions generated by an area-sink across its sides are similar to 
parabolic distributions (subsection 3.3.7). This is shown in figure 5.2.8, 
line (2) for a line parallel to and near a side. Across a line near a sharp or 
an obtuse corner, the flux distribution remains more even (lines (3) and 
(4) in figure 5.2.8). 

The head and flux distributions near an elongated area-sink (figure 5.2.9) 
become similar to the distributions near a line-sink. 
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Figure 5.2.8 	Flux distribution generated by an area-sink across 
several lines. 
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Figure 5.2.9 	Flux distribution near an elongated area-sink. 

In principle, the expression for the flux across a line in the vicinity of an 
area-sink can be found in a way similar to that for the expressions (5.7) 
and (5.8) for the line-sink, so by integration over the surface of the area-
sink. Because the integration is not solved yet, this line of investigation is 
not explored further. It also appears that area-sinks generate rather smooth 
distributions of the flux across lines in their vicinity except in the case 
shown in figure 5.2.9. Therefore, the distances between control points or 
the lengths of line-segments of elements affected by an area-sink can 
often be taken equal to the length of the closest side(s) of the area-sink. 
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Because the area-sink consists of four line elements surrounding an area 
with a constant inflow or outflow (subsection 3.3.7), its shape is only 
limited by the maximum differences in length of these line elements 
allowed by the computer accuracy. In practice, these differences are 
almost never exceeded. So, the shape of area-sinks is almost completely 
free. 

Applicability 

The following part of this subsection applies to area-sinks generating a 
Cauchy boundary condition (3.35) on top of a single aquifer. 

In models of large well drained areas such as NAGROM, the entire model 
domain is covered by area-sinks generating a Cauchy boundary condition 
(3.35) for the interaction between the surface waters and the ground-
water (chapter 6). It appears from the authors experiences, that the size 
of the area-sinks determines largely the accuracy of the model as well as 
the needed computation effort. Considering the computation effort 
needed in the large models mentioned above, an optimum between size 
of area-sinks and the accuracy is needed. In the following, a relation 
between the sizes of area-sinks with a Cauchy boundary condition and 
the model accuracy will be derived. 

At the control point of an area-sink (the centre of gravity of the element, 
subsection 3.3.7), the flux through the element is equal to the difference 
between the surface water level and the head in the aquifer divided by 
the value of the hydraulic resistance. Further away from the control 
point, the head in the aquifer approaches the heads in the neighbour-
hood of the element and deviates more from the head at the control 
point. So, the difference between the constant surface water level and 
the head in the aquifer is not constant over the area-sink. Because the 
strength is constant over the entire area-sink, the resistance in the 
element belonging to the computation results can not be constant 
(equation (3.35)). So, the model accuracy should be considered in terms 
of the accuracy of the resistance following from the computed results 
which should be compared with the specified resistance. 

Another way of thinking about the accuracy in terms of the Cauchy 
boundary condition is to state that actually the resistance should be 
constant (as specified) over the area-sink, and the flux distribution should 
be adapted to this by using a smaller element. The constant flux generat-
ed by such an element can be seen as a first order approximation of the 
variable flux. Next, the accuracy of a model of a stand-alone area-sink is 
analyzed. The largest variations in the difference between the surface 
water level and the groundwater head along flow lines below the area-
sink are found along the flow line that crosses the control point. If the 
variation along this flow line is acceptable, it will be acceptable all over 
the element. So, the accuracy in terms of the Cauchy boundary condition 
along that flow line may give a good indication of the accuracy over the 
entire area-sink. In the following, the distributions of the head and flux 
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generated by different sizes (in the direction of flow) of the area-sink are 
compared with the same distributions generated by an exact solution. 

entialfunction 

ç \ 

= variable 	k H 

I 0(o) 	0(B1 ) 

X=O 	X = B j  

P°fltial 

C 	 \\ 

= constant 	s = variable 
kH 

X=O 	X=B 1  

Figure 5.2.10 	Cauchy boundary condition on top of an aquifer; (a) 
with variable flux, (b) with partly (0 :~ x ~! B 1) constant 
and partly (x ~! B) variable flux. 

In figure 5.2.10-a, a classical case of groundwater flow in a section is 
presented (Mazure, 1936). This section is assumed to follow the flow line 
below the control point of the area-sink mentioned above. For the 
Mazure case, the section is assumed to be straight while the effects of 
curved flow lines are neglected (semi-two dimensional flow). 

At the left boundary (x = 0) the head in the aquifer is given. The Cauchy 
boundary condition on top of the aquifer generates changes in the 
horizontal and vertical flow and extends to infinity at the right hand side. 
The flow across the separating layer on top of the aquifer varies over the 
entire aquifer. The differential equation between x = 0 and x = oo is 
(Verruijt, 1982): 

(p - p 
(5.9) 

dx2 	X2 

where 
p 	= surface water level [L] 
(p 	= head in the aquifer [L] 
X 	= characteristic length = J(kHc) [L] 
c 	= hydraulic resistance of the separating layer [T] 
k 	= hydraulic conductivity of the aquifer [L/TI 
H 	= thickness of the aquifer [L] 

The general solution is expressed by: 

= p + C 1  exp(-x / X) + C 2  exp(x / 2c) 	 (5.10) 

where C 1  and C 2  are integration constants [U. The boundary conditions 
are described by: 

(p(x = 0) = (p (0) 
	

(5.11) 
(p(x = oo) = 



where (p(0) is the groundwater head specified at x = 0 [L]. These 
boundary conditions lead to C 1  = ((p(0)-p) and C2  = 0, to that the 
complete solution in the exact case of figure 5.2.10-a becomes (Mazure, 
1936): 

p = p + (p(0)-p)exp(-x/X) 	x ~!0 	 (5.12) 

In the other case of figure 5.2.10-b, an area-sink with constant strength 
is defined between x = 0 and x = B 1 . The variable flux applies for x ~! B 1 . 
(In a model, this can be done by taking the elements at the right of the 
area-sink small enough to satisfy the desired accuracy.) The differential 
equation between x = 0 and x = B 1  is: 

d 2 p = 	S 
0!~ xB 1 	 (5.13) 

dx2 	kH 

where s is the constant flux through the area-sink IL/Ti. Because s is 
constant over 0 !~ x :~ B 1 , integration over this part leads to: 

= sx/2kH + C 3 x + C4 	0 x B 1 	 (5.14) 

where C 3  and C4  are integration constants. It is assumed that the general 
solution for x > B 1  is described by (5.10). At x = B 1  continuity of the flow 
and the head in the aquifer leads to two conditions and with the 
conditions (5.11) the four integration constants can be solved. 

C 1  = -(sB 1 /kH + CO X exp(B 1  / 2) 
C 2  = 0 
C 3  = (p - p(0))/(B 1  + 2L) - (s/kH)(B 1 2 /2 + B 1  2c)/(B 1  + 2) 
C4 =p(0) 	 (5.15) 

Figure 5.2.11 shows for different values of B 1  / X and 0 x Bi, the 
ratio between the heads computed in the exact case of figure 5.2.10-a 
and the heads computed in the case with the area-sink of figure 5.2.10-
b. For B 1  / 2L 1, the ratio is about equal to 1, expressing that the heads 
(0 !~ x 	Bi) are almost equal in both cases. So, the distribution of the 
head is sufficiently accurate as long as the width of the area-sink (in the 
main direction of the groundwater flow) does not exceed the character-
istic length. For B 1  ~! 3 2, the ratio differs considerably from 1, expressing 
that the case with the area-sink leads to inaccurate heads. 
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Figure 5.2.11 	Ratio between heads at x/B1 calculated from (5.15) and 
(5.12) for different values of 

The value of the constant flux between x = 0 and x = B 1  is determined in 
the middle at 13 1 /2 in the control point of the area-sink (subsection 
3.3.7). The flux of the area-sink is based on the Cauchy boundary 
condition (3.35), which becomes: 

s = kp(131/2) - p] I c 	 0 !~ x !~ Bi 	 (5.16) 

where p(13 1 /2) is the head [U in the aquifer at the control point of the 
area-sink x = 13 1 /2. 
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Figure 5.2.12 	Ratio between heads at B 7 12 calculated from (5.15) 
and (5.12) for different values of B 1 1k. 

In order to determine the flux of the area-sink, the accuracy of the head 
p(13 1 12) at the control point of the area-sink (x = 13 1 /2) is analyzed. In 
figure 5.2.12, the same ratio of heads as in figure 5.2.11 is presented for 
different values of 13 1 /X, but this time as they occur at x = 13 1 /2. The ratio 
is about 1 for 13 1 /X :~ 3, which means that (in this situation) the head in 
the aquifer at the control point of the area-sink is about exact as long as 
the width B 1  of the area-sink is smaller that 3X. 



Next, the head (p(13 1 /2) is used to compute the constant flux of the area-
sink between x = 0 and x = B 1  similar to in the way it occurs in the AEM. 
According to the results in figure 5.2.12, this head in the case with the 
area-sink is about equal to that in the exact case if B < R. Therefore, the 
solution of the exact case (5.12) can be used to describe p(13 1 /2) as long 
as B < 3). Then, the total flux through the area-sink (per unit width 
perpendicular to the section) S(0,B 1 ) between x = 0 and x = B 1  becomes: 

S(0,13 1 ) = B 1  s = B 1  (p(0)-p) exp(-B 1 /2X) / c 	B < 3? 	(5.17) 

This total flux through the area-sink is compared with the total flux 
S(0,13 1 ) through the separating layer between x = 0 and x = B 1  in the 
exact case (figure 5.2.10-a). The latter total flux is found by calculating 
the difference between the inflow in the aquifer at x = 0 and the outflow 
at x = 13 1 . Darcys law (3.2) in combination with (5.10) and (5.12) leads 
to: 

0(0) - 0(13 1 ) = kH((p(0)-p)[1-exp(-B 1 /2)1/X 	 (5.18) 

where: 
0(0) 	= total flux at x = 0 per unit width perpendicular to the section 

[L2 /T] 
0(13 1 ) 

	

	= total flux at x = B 1  per unit width perpendicular to the section 
[L2 /T] 

The relative difference E between the fluxes is defined by: 

E = (0(0) - Q(131) - S(0,B 1 )) 1(0(0) - Q(13 1 )) 	 (5.19) 

Combination of (5.17), (5.18) and (5.19) leads to: 

E = 1 - 13 1 /2? / sinh(B 1 /2X) 
	

(5.20) 

In table 5.1, the values of E are given for several values of 13 1 I2? (with 
B 1  < 3X). From the values in this table it is concluded that, when B 1  is 
about 2 the error in the total flux through the area-sink is 4%, which is 
generally acceptable in models. 

Table 5.1. Relative error E in terms of the flux. 

B1/2X 	 .1 	 .5 	1. 	 1.5 

sinh(B1/2X) 	.1002 	.521 	1.17 	2.13 
E 	 .002 	 .04 	.145 	 296 

The above analysis can be generalized to a rule for the maximum size of 
area-sinks in the main direction of flow. For the accuracy in the total flux 
through the area-sink (table 5.1) as well as in the head distribution in the 
aquifer below the entire area-sink (figure 5.2.11), the maximum size 
should be about X. So, the length of any area-sink in the direction of 
flow should be about equal to ? in order to derive a commonly accepted 
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accuracy. This rule will be applied in subsections 5.3.4 and 5.4.1. 
Olsthoorn and Moorman (1991) derived the same rule from several test 
computations with a model of area-sinks. 

5.2.4 The inhomogeneity 

The behaviour and the effects of an inhomogeneity are analyzed in both 
a uniform and an axial-symmetric flow field. In both cases, it will be 
shown that the behaviour of the inhomogeneity in a model depends on 
whether the transmissivity inside the element is higher or lower than 
outside the element. 

The inhomogeneity in a uniform flow field 

The effect on the flow of an inhomogeneity with a relatively low 
transmissivity is fundamentally different from that of an inhomogeneity 
with a relatively high transmissivity. To illustrate this, the following 
expression of Strack and Haitjema (1981) for the ratio between the flux 
inside and outside a cylindrical inhomogeneity in a uniform flow field 
(figure 5.2.13) is used: 

0x,in'0 )cout = 2k jflh l(k + 	 (5.21) 

where: 

kinh 	= hydraulic conductivity inside the inhomogeneity [L/T] 
k 	= hydraulic conductivity outside the inhomogeneity [LIT] 

= flux component in x-direction per unit width (in y-direction) 
inside the inhomogeneity [L2/T] 

°xout = flux component in x-direction per unit width (in y-direction) 
outside the inhomogeneity [L2ITI 

This expression shows that if k fl h>> k the flux inside Qon  approaches 
the limit of 	So, the effect of an increase of the hydraulic 
conductivity on the flow is limited. This means that the jump to be 
generated by the different line-segments of the inhomogeneity is limited. 
Once, the distribution of the segments has been determined accurately 
for a jump in the transmissivity, it is very likely that the same distribution 
will do also if that jump is increased. 
If k fl h << k the flux inside Qx,in  approaches the limit of 0. In any 
situation, a decrease of the transmissivity inside the inhomogeneity 
causes further decrease of the flow across the line-segments. This means 
that the jump to be generated by the line-segments of the 
inhomogeneity is not limited. Therefore, any decrease of transmissivity 
may cause a need to adapt the distribution of the line-segments. 



/ 
Qx ' out XIfl 

Figure 5.2.13 	Definition scheme fora cylindrical inhomogeneity in a 
uniform flow field. 

Applicability 

The effect of an inhomogeneity in a uniform flow field has already been 
presented in figure 3.3.14. In that figure, the effect is shown of a domain 
in which the transmissivity is higher than in the rest of the aquifer. The 
boundary of that inhomogeneity consists of numerous line-segments, so 
that the jump in the transmissivity is modeled almost perfectly. However 
in a common situation, as few line-segments as possible are used in a 
model. This implies that the distribution of line-segments should be 
adapted to the distribution of the flux through the boundary of the 
inhomogeneity. 

In figure 5.2.14, two cases of a square inhomogeneity in uniform flow are 
presented in which the transmissivity is low compared to the transmissivity 
of the aquifer. In the situation of figure 5.2.14-a, only one line-segment is 
used per side. In the corners, peaks in the flow occur, which can not be 
accounted for by the segments of this figure. These peaks should be 
modeled using short line-segments as shown in figure 5.2.14-b. 

The line-segments (with a parabolic strength distribution, subsection 
3.3.6) in normal direction to the uniform flow (segments 1) can easily 
account for the flow crossing these segments. Across the sides in the 
direction of the uniform flow, inflow as well as outflow occurs. The single 
line-segments of figure 5.2.14-a can not properly account for the distribu-
tion of the flux across the segment, which is shown by the distributions of 
the head. In such a case, at least two segments should be used (figure 
5.2.14-b): one generating the distribution of the outflow (segments 2) 
and one generating the distribution of the inflow (segments 3). 

M. 
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Figure 52.14 Square inhomogeneity in uniform flow with (a) one 
line-segment per side and (b) line-segments adapted to 
the flow across the boundary. 

The inhomogeneity in an axial-symmetric flow field 

In the situation of an inhomogeneity in an axial-symmetric flow field, an 
approximately circular inhomogeneity around a well is used (figure 
5.2.15). In this case, the analytic solution for the abstraction rate of a 
head-specified well is found using the fact that the total difference in 
head between the well and the reference point equals the sum of all 
differences in head in the intermediate stretches: 

1 	r 	1rref 
Qw,inh = 2 	(Pret - 	)/[ 	In inh + 	ln] 	(5.22) 

ki n hHi n h 	rw 	kH 	rIh 

where 

Pref 	= head at the reference point [L] 

Tw 	= head at the well radius [U 
k fl hHI fl h = transmissivity within the inhomogeneity [L 2 /T] 
r 	= well radius [L] 
rref 	= distance from the well to the reference point [L] 
rflh 	= radius of the in homogeneity [L] 

°winh 	= abstraction rate of a well inside a circular inhomogeneity 
EL3 /T] 

MA 
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Figure 5.2.15 Scheme for a circular inhomogeneity approximated by a 
hexagon of line-segments with a well in the centre. 
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Figure 5.2.16 	Inhomogeneity as defined in figure 5.2.14 with very 
high (a) and very low transmissivity, relative to the 
outside transmissivity. 

The basic expression for the abstraction rate of a well Qw  in a confined 
aquifer can be found by taking khHh = kH in expression (5.22), which 
complies with expression (3.19). The ratio between Qw  and °w,inh  then 

becomes: 

= kH 	ln(rh/rW) + ln(rref/rflh) 	 (5.23) 
Qwh 	kj fl hHj fl h 	ln(rw /r ret) 	ln(rref/rw ) 

So, when k h H flh  becomes large (figure 5.2.16-a), the ratio between Q 
and Qwh  approaches the value of the second term of the right hand 
side of this expression, which is independent of kflhHflh.  On the other 
hand, when kflhHflh  becomes small (figure 5.2.16-b), the ratio between 
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Q and °wjnh  becomes large, so the flux into the inhomogeneity is 
strongly obstructed from the boundary. To the inside this obstruction can 
only be generated by many line-segments. This means that the approach 
for the adaption of segments to the flow across the boundary of the 
inhomogeneity described above for the case of uniform flow also holds in 
the case of axial-symmetric flow and most likely will be valid in any flow 
situation. 

At this point, it is interesting to see what the equivalent transmissivity 
Teq 11 2 /T1 will be that is defined as the transmissivity between the well 
and the reference point which gives the same difference in the heads at 
the well radius and at the reference point with the abstraction rate of the 
well QwInh: 

Teq  = {Qw,inh In (r ref/rw) }"{2 Th( (Pref - 	 (5.24) 

By combination of (5.22) and (5.24), l/T eq  becomes: 

Teq  

In[rl fl h/rW ] 

kj flhH fl h In[rref/rw] 

In [r ref/r ifl h] 

+ kH ln[rref/rw] 	
(5.25) 

From (5.25), it follows that the equivalent transmissivity equals the length-
(along the radius to the reference point)-weighted harmonic mean of the 
transmissivities inside and outside the inhomogeneity. In general, r w  is small 
and rref  is large compared to rflh.  If ln(rlflh/rW)  is in the same order of 
magnitude as ln(r ref/r in h), a relatively low transmissivity inside or outside 
the inhomogeneity makes the relatively high transmissivity of minor 
importance for the equivalent transmissivity. So, in a given situation, the 
groundwater flow is mainly sensitive for variations in the lowest 
transmissivity, which can occur inside as well outside the inhomogeneity. 

As said before, groundwater flow is more affected by changes in relatively 
high resistances in the aquifer (the low transmissivities) than by changes in 
relatively low resistances in the aquifer (the high transmissivities). This rule 
is opposite to the rule for the combined effect on the groundwater flow of 
different resistances in a separating layer. The average resistance of a 
separating layer over a certain area is determined by the area-weighted 
harmonic mean of the resistances. According to this, the groundwater flow 
is most affected by changes in the lowest resistance of a separating layer. 

As a consequence of the rule for modeling derived above, an 
inhomogeneity with relatively high transmissivity is easier to be modeled 
than an inhomogeneity with a low transmissivity. This agrees with the 
modeling experiences of the author and has become an important rule 
in modeling with inhomogeneities. 



Applicability 

In figure 5.2.16-a, an inhomogeneity with an very high transmissivity 
(1000 times higher than the aquifer transmissivity) is presented. The 
inhomogeneity can easily account for this difference in transmissivity. In 
figure 5.2.16-b, an inhomogeneity with an very low transmissivity (1000 
times lower than the aquifer transmissivity) is presented. 

Taking into account the large change in the gradient of the head, figure 
5.2.16 shows small distortions in the distribution of the head near the 
boundary. The small distortions point out that the jump in transmissivity 
is about the maximum that can be generated by the segments. Compu-
tations with smaller jumps did not give these distortions and larger jumps 
cause larger distortions. From the authors modeling experience it is 
concluded that in a general model an inhomogeneity can generate a 
lower transmissivity of a factor up to 100, if the distribution of the line-
segments is adapted carefully for the flow distribution across the 
boundary of the inhomogeneity. 

5.2.5 The leaky wall and the impermeable wall 

The leaky wall affects only the flow component in normal direction to the 
element. The properties and the behaviour of the impermeable wall can 
be deduced from the analysis, in this subsection, of a leaky wall of which 
the hydraulic resistance is taken infinite. This subsection deals with the 
behaviour of a leaky wall in a uniform and in an axial-symmetric flow 
field. 

The leaky wall in a uniform flow field 

The effect of a leaky wall is directly related to the ratio of the resistance 
of the element cIkW and the resistance along a flow path around the 
element starting at one side in the middle of the element and ending at 
the other side in the middle of the element (LjkW/k),  because this ratio 
describes which part of the flow will cross the element or will flow 
around it. The ratio is expressed by the coefficient v (valuator): 

v = cIkW  k / LIkw 
	 (5.26) 

in which: 
cIkW = hydraulic resistance of the leaky wall against horizontal flow [T] 
k 	= horizontal hydraulic conductivity of the aquifer [ LIT] 
Llkw = length of the leaky wall [L] 

If v < 1, most of the groundwater will flow across the element (figure 
5.2.17-a) and the element actually has virtually no effect on the 
groundwater flow. 
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Figure 5.2.17 	A leaky wall in uniform flow; in case (a) v = .5 and in 
case (b) v = 20. 

If v> 10, the leaky wall behaves almost like an impermeable wall; almost 
all the groundwater flows around the element since the resistance along 
that path is much lower than along the path across the element (figure 
5.2.17-b). In case 1 <v < 10 the groundwater flow is affected by the 
element but still a relevant part may flow across it. 

It follows from expression (5.26), that the effect of the leaky wall is not 
related to the transmissivity of the aquifer but to its hydraulic 
conductivity k only. This is important to consider in the cases where 
equation (3.32) is applied to avoid iteration. 

The leaky wall in an axial-symmetric flow field 

The situation of a leaky wall in axial-symmetric flow can only be 
observed clearly using a circular element (figure 5.2.18), because the 
element acts only in the direction normal to the flow. Therefore, as an 
exception, in the next part of this subsection use is made of the 
curvilinear element (subsection 4.2.1) to illustrate the analysis. 

The expression for the flux Qw  of a head specified well in the centre of 
the circular leaky wall is derived in a similar way as in the case of 
expression (5.22). 

Qw  = 2itkH (Pret - p) / [ ln(rref/rw) + clkW k/rlkW  1 	(5.27) 

where: 
rJkW = distance from the well to the concentric circular leaky wall [L]. 

Equation (5.27) reduces to the common well formula (cf. (3.19) with 
(3.6) ), if rlkW  approaches to infinity or clkW  approaches to zero. The term 
clkWk/rikW  is similar to the right hand side of expression (5.26), but here 
the distance between the well and the leaky wall appears. The larger this 
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distance, the more the abstraction rate of the well approaches the 
abstraction rate of a well in the case without the leaky wall. 

leaky wall 

well 

0 08,,, 

0.07,,, 	 100r 

kH = 100 m 2 /d 	Clkw = 100 d 	Pwell = 10 m 

Figure 5.2.18 	A well in the centre of a circular leaky wall 

This analysis can be used in cases where the leaky wall is used to isolate 
(a part of) a model. When looking at a model of analytic elements from 
a relatively very large distance, the model reduces to a point and the 
flow pattern generally looks similar to that in the case of a single well. 
So, the well may be seen as a representation of a model when looking at 
a large distance. Then, the behaviour of the leaky wall surrounding the 
model area (like the well in figure 5.2.18) can be estimated by using 
expression (5.27). 

Applicability 1 

In NAGROM, leaky walls (straight droot and curvilinear elements) have 
been used to model elongated deep troughs filled with boulder clay, 
which partly cut off the aquifer (De Lange and Van der Meij, 1994). The 
resistance of the element expresses the effect of the reduced 
transmissivity below the trough. The relation between the resistance of 
the leaky wall clkW  and the properties of the trough in the aquifer is 
derived as follows. 

As presented in figure 5.2.19, the trough is assumed to have a triangular 
shape. Right of the lowest point of the triangular trough, the thickness 
H(x) of the aquifer can be expressed by: 

H(x) = (2Ht r/Btr) x + H - Htr 	0 !~ x :~ Btr/2 	 (5.28) 

where 
Htr  = maximum thickness of the trough [L] 
Bt r  = width of the trough at the top of the aquifer [L] 
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Btr 

dx 

Figure 5.2.19 	Scheme for the determination of the resistance of a 
leaky wall simulating a deep impermeable trough. 

The transmissivity T" at x inside the strip dx under the trough is 

T" = k H(x) = k H 
	

(5.29) 

The specific resistance to groundwater flow 0 [T] inside this strip of 
width dx at place x is determined using H as the thickness, because the 
leaky wall element acts over the entire thickness H. 

dc = HIT dx 	 (5.30) 

The specific resistance to groundwater flow c [T] inside strip dx in the 
case without the trough is: 

dc = H/T dx 	 (5.31) 

where T (= kH) is the transmissivity of the aquifer [L2 ITI. The difference 
between the specific resistance with and without the trough inside the 
strip dc becomes: 

dc = dc - dc = (1/k - 1/k) dx 	 (5.32) 

Assuming a symmetric shape of the trough, the difference in the 
resistance over the entire trough Ctr  becomes: 

Btr/2  
Ctr  =25 	dc 	 (5.33) 

0 

Using k= kH(x)/H (from expression (5.29)) and expressions (5.28) and 
(5.32), integration leads to the following expression: 

Ctr  = Bt r/k ((H/Ht r) In  IH/(HHtr)I - 1) 	 (5.34) 



in which Ct r  becomes 0 for Ht r  = 0 and Ct r  becomes o  for Htr  = H. The 
total difference in the resistance is to be generated by the leaky wall, so 
cIkW = Ct r . 

Applicability 2 

Curvilinear leaky walls have been used in NAGROM to model anisotropic 
behaviour in the horizontal plane in a certain domain (De Lange and Van 
der Meij, 1994). The anisotropic behaviour is generated by the leaky 
walls because the flow across the elements is affected and the flow along 
the element is not. In this way, the resistance to horizontal flow in the 
model is different in both directions and, therefore, the effective 
hydraulic conductivity is different. 

The leaky wall accounts for the difference between the high and the low 
hydraulic conductivity by generating resistance to the flow in the 
direction of the lowest hydraulic conductivity. Again, the value of the 
resistance of the leaky wall is determined by the difference of two 
resistances. The resistance of the leaky wall is determined for the length 
Lk_I ow  [Li (index indicates k1 0 ) in the direction of the lowest hydraulic 
conductivity k1 0  [LIT] over which the element is assumed to act (figure 
5.2.20). The desired resistance in the direction of the lowest hydraulic 
conductivity is LkIQW/kIOW  The actual resistance in the model is caused by 
the high hydraulic conductivity khjgh [LIT] and is LkI Qw /khj gh. 

The difference between these resistances should be generated by the 
leaky wall, which results in: 

cIkW = L 0/k0 - LkIow/khjgh 	 (5.35) 

A change in the distance Lk low' e.g. because of refinement of the model, 
causes a change in the hydraulic resistance of the leaky wall. It is 
concluded that anisotropic behaviour can easily be simulated by parallel 
leaky walls because the parameters of each leaky wall can be specified 
quite easily using expression (5.35). 
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2.5,fl 	2am 

Ii  
/ 

1000w 

control point at 
leaky wall 
area-sink 

H =50m 	 k=50m/d 

0wefl = 5000 m 3 /d 	area-sink: y = -.0006 mId 

ki0 = 12.5 mId, generated by Clk w  = 30 d, except for the short leaky walls close to well 

where Clkw  = 10 d 

Figure 5.2.20 	Curvilinear leaky walls used to model anisotropy 

5.2.6 The crack and the drain 

A crack (figure 5.2.21) or a drain (figures 3.3.7 and 3.3.8) causes a 
change in the transmissivity in its own direction only. The transmissivity 
in normal direction to the crack or drain is not changed. Only the flow 
component in the direction of the crack or drain is affected, because the 
crack is a jump in the stream function (Strack, 1989). At both tips a 
concentration of flow is generated (figure 5.2.21, line (1)). The inflow 
into the upstream part of the element is equal to the outflow from the 
downstream part (figure 5.2.21, line (2)). 

The forthcoming analysis of the properties and the behaviour of the 
crack (which includes the drain by taking an infinitely large transmissivity) 
is based on numerous numerical experiments, some assumptions that are 
more or less physically based and the basics of groundwater hydrology. 
The behaviour of the crack is analyzed step by step in both uniform and 
axial-symmetric flow. 
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80, 	70m 	6Dm 	5Dm 	4Dm 	30m 	2Dm 	10m 

7/ 	50Cm 

1 =nrof line 
60m = head 

k = 10 mId 	H = 50 mId 	kcrBcr = 105 m2 /d 	uniform flow = 1 m 2 /d 

Figure 5.2.2 1 	Flux distribution across lines near a crack in a uniform 
flow field. 

The crack in a uniform flow field 

The effects on the groundwater flow generated by a crack in uniform 
flow (figure 5.2.21) can not be directly characterized by the hydraulic 
conductivity of the crack because of the following. Parallel to in the case 
of an inhomogeneity with a relatively high hydraulic conductivity, a high 
hydraulic conductivity of a crack has a limited effect on the groundwater 
flow because the maximum flux to the element is limited. Considering a 
certain gradient in the head in the direction of the crack, the flux 
through a strip including that crack is not straight forwardly related with 
the sum of the hydraulic conductivities of both the aquifer and the crack 
in that strip. As will be shown in the next analysis, the flux through the 
strip will generally be smaller than following from the gradient in the 
head and the sum of the transmissivities. The total hydraulic conductivity 
in that strip, including the hydraulic conductivity of the crack, is not 
really effective on the groundwater flow but only by a (not a priori 
known) part of it. Therefore, the hydraulic conductivity of a crack can 
hardly be used to determine its effect on the groundwater flow. The 
effect of the crack can be characterized well by the maximum flux inside 
the element, which occurs in the middle of the element in the case of a 
crack in uniform flow. 

Numerous test computations showed, that the maximum flux in a crack 
in uniform flow largely depends on its transmissivity kcrBcr  compared to 
its length Lcr  multiplied by the hydraulic conductivity of the aquifer k. 
The effect of a crack can be neglected, if kcrBcr  is much smaller than kL cr  
(e.g. 0.1 kLcr).  Then, the crack does not change the distributions of the 
head and flux significantly. The test computations have led to the 
following relations: 



1 - In a crack with relatively high transmissivity kcrBcr  compared to kL cr , 
the flux in the middle of the crack is equal to the length of the crack 
multiplied by the component of the uniform flow in the direction of 
the crack, or: 

Qcr,m = L cr  U 5 , if (kcr B cr  / kLcr) >> 1 	 (5.36) 

where: 
k 	= horizontal hydraulic conductivity of the aquifer [LIT] 
kcr B cr  = transmissivity of the crack [L 2 IT] 
Lcr 	= length of the crack [1] 
Qcr,m = flux in the middle of the crack [L 3 /T] 
U 5 	= flux component (per unit width) of the undisturbed uniform 

flow in the direction of the crack [L 2 IT] 

2 - In a crack with a relatively low kcrBcr  compared to kLcr,  the flux in the 
middle of the crack is equal to the component of the uniform flow in 
the direction of the crack multiplied by the transmissivity of the crack 
and divided by the hydraulic conductivity of the aquifer, or: 

Qcr,m = U 5  kcrBcr  1k, if (kcr B cr  I k L, d << 1 	 (5.37) 

3 - The flux in the middle of the crack is not influenced by the thickness 
of the aquifer nor by the flux in normal direction to the crack. 

In figure 5.2.22, the relation resulting from the test computations is 
presented. X and Y are the dimensionless parameters on the x-axis an y-
axis respectively and are defined as: 

X = k c B c  I kLcr 	 (5.38a) 
Y = 0cr,m I U 5 L 
	

(5.38b) 

Because of the relative simplicity of the curve in figure 5.2.22, it was found 
that the curve can be described by: 

Y = X 1(1 + X) 
	

(5.39) 

10 

10 

X= 

10 ,  

10 1  10 1 1010 -1 1010 1  1 10 10 10 10 1  10' 

, 	
k L, 

Figure 5.2.22 	Relation between parameters influencing the flux in the 
middle of a crack in uniform flow. 
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Combination of (5.38) and (5.39) leads to: 

Qcr,m = UIC  Lcr  U 5 	 (5.40a) 

where: 
cc = kcrB cr  / (kcrB cr  + kLcr) 	 (5.40b) 

This formula agrees with all the conclusions drawn from the test 
computations mentioned above and is illustrated in tables 5.2.a - 5.2.d. 
Strack (1981, p1  2) derived an exact solution for the flux distribution 
through the entire crack, while the width of the crack varied according to 
an analytic function. In the middle of a crack with constant width his 
expression becomes equal to (5.40). 

Table 5.2 Comparison of fluxes computed by the AEM and by formula 
(5.40) with variation in (a) L cr , (b) kcr Bcr, (c) k, and (d) U. The standard 
values are Lcr  = 200 m, kcrBcr  = 1000 m2/d, k = 10 m/d, Us = 1 m/d. 

 
Lcr  1 10 100 200 1000 10000 

0Crm AEM 0.999 9.9 92.2 171 541 1030 
0cr,m (5.40) 0.999 9.9 90.9 167 500 909 

 
kcrBcr 	.001 .01 	.1 	1.0 	10 	100 	1000 	10000 100000 

crm AEM 	.001 	.01 	.1 	1.0 	10.5 	74 	171 	197 	200 
0cr,m (5.40) .001 	.01 	.1 	.99 	9.5 	67 	167 	196 	200 

k .001 .01 .1 1 10 100 1000 10000 100000 

Qcrm M 200. 200 197 171 74 10.6 1.02 .1 .01 
0cr,m (5.40) 200 200 196 167 67 9.5 .99 .1 .01 

u s  .1 1 10 100 

Qcr, m AEM 17.1 171 1711 17112 
cr,m (5.40) 16.7 167 1667 16667 

It follows from (5.40) that the flux in the crack is limited when its length 
becomes large (actually, when kL cr  becomes much larger than .k crBcr). Then 
(5.40) turns into (5.37), which can be written as: 

Qcr.m = U s  kcr B cr/k 	 (5.41) 

It follows from expression (5.41) that, in case of the increase of the length 
of a long crack, the transmissivity of the crack limits the inflow, outflow 
and through flow, which also become independent of the length. It follows 
from expression (5.36) that in the case of the increase of a high 
transmissivity of a crack, the length of the crack and the strength of the 
flow component in the direction of the crack limit the inflow, outflow and 
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through flow, which become independent of the hydraulic conductivity. 
This illustrates that the effect of a crack on the groundwater flow can not 
simply be determined from its transmissivity only. 

The crack in an axial-symmetric flow field 

Next, a crack in axial-symmetric flow towards a well (figure 5.2.23) is 
analyzed. Again, numerous test computations have been carried out to 
derive a relation between the parameters and the behaviour of the crack. 
In this, expressions for the maximum flux through the crack are derived, 
starting with the expression for the crack in uniform flow. The results of 
the derived expressions are verified with the results of computations. 

The shape of the crack is a line so it has a length but no width. The width 
remains undefined in the axial-symmetric case. Therefore, the element can 
be used in the axial-symmetric analysis without adaption of its shape while 
the hydraulic conductivity kcrBc,  remains constant over the element. 

Next, the place of the maximum flux through a crack in axial-symmetric 
flow is determined and after that an expression for that maximum flux. 
From an analysis of the derivation of the expression (5.40), it was expected 
that the maximum flux in a crack in axial-symmetric flow might have a 
relation with the undisturbed flow in the direction of the element similar to 
what occurs in the case of a crack in uniform flow. 

cra ck 

well  

2.6 

k=10m/d 	H=50m 

kcrBcr = 105 m2Id 	Pwell = 10 m 

Figure 5.2.23 	Crack in the originally axial-symmetric flow field 
generated by a well. 

In the case of a crack in uniform flow, the total inflow over one half of the 
length of the crack equals the total outflow over the other half. In other 
words, the integral of all inflow over the distance between one tip and the 
point of maximum flux inside the crack equals the integral of all outflow 
over the distance between the other tip and that point. The maximum flux 
inside the crack in uniform flow occurs in the middle of the element and 
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expression (5.40) shows that th maximum flux is directly (linearly) related 
to the undisturbed flow in the direction of the crack. 

The undisturbed flow occurs alcng the crack only if its effects on the flow 
are absent, so in the imaginary situation that the crack is replaced by just a 
line. The integral of that undisturbed flow over the distance between one 
tip and the middle point of that line equals the integral of that undisturbed 
flow over the distance between the other tip and the middle point. So, by 
stating that both integrals in the last sentence are equal, the point of 
maximum flux of the crack can be found. 

This relation is used to determine the place of the maximum flux of a crack 
in axial-symmetric flow. The comparison between the computed results 
and the results of the derived expression for the maximum flux in the crack 
(table 5.3) will show that the derived expression is acceptable. 

The undisturbed flux U(r) [L 2/T] in the imaginary case of a not-effective 
crack (just a line) in an axial-symmetric flow field is dependent on the 
distance r to the well expressed by: 

U(r) = Q / 21rr 	 (5.42) 

Consider the line (representing the not-effective crack) situated along a 
radius between the distances r 1  and r2  from the well. Next, the point r can 
be determined at which the integral of U(r)  over the distance between 
one end of the crack and that punt equals the integral over the distance 
between the other end and that point. Integration of the flux over r2  - r 
leads to: 

02-rn = J Q/2mr dr 
	

(5.43) 
rp  

with the solution: 

02-rn = Q/21r In (r2Ir) 
	

(5.44) 

where: 
r 	= distance from the well to point P [L] 
r 1 	= distance from the well to the closest tip of the line [L] 
r2 	= distance from the well to the farthest tip of the line [L] 
Qw  = abstraction rate of the well [L 3/T] 

Similarly, the integration over part r - r 1  gives: 

Qrn-i = Q/2m In (r/r 1 ) 	 (5.45) 
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where r 1  is distance from the well to the closest tip of the crack [U. At r p  
the equation 02-m = °m-1 is used, leading to: 

r = )(r 1 r2 ) 	 (5.46) 

So, at r = r the flux U 5 (r) along one part of the line equals the flux along 
the other part of the line. Based on the analysis described above, it is 
assumed that the maximum flux in a crack at the place of the line between 
r 1  and r2  (figure 5.2.23) occurs at ra mx  = rp . Combination of (5.46) with 
(5.42) gives: 

U s(rQmx) = Q / 2itJ(r 1 r2 ) 	 (5.47) 

Table 5.3 Comparison of the maximum flux in a crack computed by the 
AEM and by expression (5.48) with variation in (a) Lcr, (b) kcrBcr,  (c) k, and 

r1 , with L cr  = 200 m, k crBcr  = 1000 m 2 /d, k = 1 m/d, r 1  = lOOm. 

(a) 1  

cr,rn AEM 	 .07 	.68 	4.56 	9.36 
Qcr(r nix ) (5.48) 	.07 	.68 	4.58 	8.97 

________________ 
kcrBcr 	 .001 	.01 	.1 	1 	10 	100 	1000 104 	iO 

0crm AEM 	.00004 .0004 .004 	.04 	4 	.28 	6.6 	7.6 	7.7 
Qcr(rQmx) (5.48) 	.00004 .0004 .004 	.04 	4 	.26 	6.7 	7.9 	8.0 

 
k 	 .001 .01 .1 	1 	10 	100 	1000 104 iO 

0cr,rn AEM 	.008 .08 .76 	6.6 	28.4 	37.5 	37.5 37.5 37.5 

Qcr(romx)(548) 	.008 .08 .79 	6.7 	26.6 	37.9 	39.6 39.7 39.7 

(d) 2  
r1 53 10 	20 	50 	- 100 500 1000 

0cr,m AEM 40.9 22.8 	15.1 	9.55 	6.6 2.07 1.1 

Qcr(ramx ) (5.48) 25.8 20.2 	15.3 	9.95 	6.7 2.0 1.1 

1 	1H cr > 1000 m the crack is too close to the reference point due to its length 
'2 	If r 1  > 1000 m, the crack is too close to the reference point due to the distance to the well 
" 	crack very close to the well. 
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Test computations (table 5.3) showed, that the maximum flux in the crack 
can be described by using expression (5.40), in which U 5  is replaced by 
U s (rQmx) derived in expression (547) 

Q cr(r0mx) = crcQw Lcr  / 27tN(r 1 r2 ) 	 (5.48) 
where: 
Qcr(Qmx) = maximum flux through the crack [L 3 /T] 

Expression (5.48) can be rewritten into: 

Qcr(Qmx) = PC Q 	 (5.49a) 

with 
P C  = ac  Lcr  / 2irJ(r 1 r2 ) 	 (5.49b) 

The presence of cr5  in (5.49b) indicates that the effect of the crack on the 
groundwater flow is based on a relation between the transmissivity of the 
crack and its length (multiplied by the hydraulic conductivity of the aquifer) 
similar to that in the case of uniform flow. So, the same conclusions apply 
in both flow situations with respect to these parameters of the crack. 

The ratio Lcr/I(r i r2) becomes J(Lcr/ri)  if  Lcr >> r1  and becomes Lcr/ri  if Lcr  
<< r. This means that r 1  divided by a certain factor has the same effect on 
the maximum flux in the crack as L cr  multiplied with the same factor. With 
respect to this effect, the distance to the well is of equal importance as the 
length of the crack. 

Applicability 

It is interesting to analyse the effects of several cracks in the neighbourhood 
of a head-specified well on its abstraction rate in order to examine the 
possibility of using these cracks i -i the simulation of anisotropic behaviour. 

The derivation of the expressions for this analysis starts with a description of 
the effect of the crack on the transmissivity in the annular domain between 
r2  and r 1  (figure 5.24) in the case that the crack is along a radial. (Later on 
the case of a crack arbitrary situated within an annular domain will be 
discussed.) The transmissivity representing the effect of the crack in the 
annular domain is used to derive the equivalent transmissivity between the 
well and the reference point simiar to that in the case of the inhomogeneity 
(expression (5.20)). Using this equivalent transmissivity, the expression for 
the effect of the crack on the abstraction rate of the well can be found, 
because the head is specified both at the well radius and at the reference 
point. The derivation ends up with an expression for the relation between 
the abstraction rate of a well in an aquifer without cracks and the 
abstraction rate of a well with n cracks in its neighbourhood. 

If the head of the well is specified, the crack affects the abstraction rate of 
the well. This abstraction rate car ,  be determined in an approximate way 
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by assuming continuity of flow across the concentric circle around the well 
over rome  (all groundwater flow goes towards the well): 

= Q(romx) + 0cr('mx) 	 (5.50) 

where: 
Q(r0mx) = the flux through the concentric circle at r = rQ mx  (figure 5.2.24), 

outside the crack [L 3 /T] 
= the abstraction rate of the well affected by a single crack (index 

1) [L3 /T] 

This expression can be combined with expression (5.49a) by taking into 
account that Qw  in (5.49a) is affected by the single crack, so Q,i = Q. 

Qwj  = Q(romx) / 0 - 13) 
	

(5.51) 

From the results of test computations (e.g. as presented in the tables 5.3 
and 5.4), it has been concluded that generally the maximum flux through 
the crack is several orders of magnitude smaller than the abstraction rate at 
the well. This means that most of the groundwater flows outside the crack 
through the circle at rO me  and is not affected by the crack. As a first order 
approximation, the flux Q(rQmx)  is described by an expression for axial-
symmetric flow through the circular domain at rOme  outside the crack 
(figure 5.2.24) assuming that the effect of the crack on this flux is 
negligible. 

Q(romx) = 2itkH kp(r2) - p(r 1 )] / ln(r2/r 1 ) 	 (5.52) 

The flux to the well Q1  can be described by an expression for axial-
symmetric flow through the annular domain around the well (figure 
5.2.24) including the effect of the crack by using a representative 
transmissivity Tan,  according to: 

°w,1 = 27tTan  [p(r2) - p(r 1 )I / ln(r2 /r 1 ) 	 (5.53) 

where: 
Tan  = representative transmissivity in the annular domain including the 

effect of the crack [L2/T] 

reference point 

Figure 5.2.24 	Scheme for derivation of the equivalent transmissivity 
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Substitution of (5.52) and (5.53) in (5.51) leads to: 

Tan = kH / (1 - 1) 	 (5.54) 

The annular domain can be seen as an annular inhomogeneity around 
the well representing the effect of the crack on the abstraction rate of 
the well. Similar to the definition in expression (5.24), the equivalent 
transmissivity Teq  in the domain between the reference point and the 
well is defined by: 

Teq  = Qw,i ln(rref/rw)/[27t(pref - Pw)] 
	

(5.55) 

The expression for Teq  in terms of transmissivities for the case with the 
annular domain of figure 5.24 is derived similarly to expression (5.25). 

1 	1 	1 	1 	ln[r - ____ + [- 	- 	 (5.56) 
Teq 	- 	kH 	Tan 	kH 	In [rref/rw ] 

Combination of (5.56) and (5.54) leads to: 

Teq  = y kH 	 (5.57a) 

with: 

In_[r2/r1] 	
(5.57b) 

In [rref/rw] 

At this point, a relation between the abstraction rate of the well in the 
case with a crack Qw , j  and in the case without a crack Q w , O  can be found 
based on the equivalent transmissivity and the heads specified at the well 
radius and at the reference point. In the situation without a crack the 
flux to the well is expressed by the standard well formula: 

= 2mkH [Pref - Pw]/ln(rretkw) 	 (5.58) 

Combination of (5.55), (5.57a) and (5.58) leads to: 

QWj = 7C Q,o 	 (5.59) 

Table 5.4 shows a comparison of the results of equation (5.59) with the 
results computed with Stracks AEM. The results of the formulas and the 
AEM compare well for the entire range of values of the parameters. 

From table 5.4, it can be concluded that the abstraction rate of the well 
is hardly affected by changes in the length or in the transmissivity of the 
crack. When the distance between the (closest point of the) crack and 
the well becomes small some effect is determined. If the well is really 
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connected to the crack the effect may become considerable. Of course, a 
change in the hydraulic conductivity of the aquifer (table 5.4, part c) 
causes a change in the abstraction rate of the well. 

Table 5.4 Comparison of the well flux computed by the AEM and by 
expression (5.59) with variation in (a) L cr , ( b) kcr B cr , (c) k, and (d) r 1 , with 
Lcr  = 200 m, kcrB cr  = 1000 m 2 /d, k = 1 m/d, r 1  = 100 m. 

(a) 1 

Lcr 	 1 	10 	100 	1000 

Qw  AEM 	45.47 	45.48 	45.66 	47.6 
Ow (5.59) 	45.47 	45.48 	45.70 	47.0 

kcrB cr  .001 .01 .1 1 10 100 1000 104 10 

O AEM 45.47 45.47 45.4 45.5 45.6 45.7 45.9 45.9 45.9 
Ow (5.59) 45.47 45.47 45.4 45.5 45.6 45.7 46 46.1 46.1 

1< .001 .01 .1 1 10 100 1000 104 10 5 

Ow AEM .046 .46 4.59 45.9 457 4550 45500 4.5 10 4.5105  

ow (5.59) .046 .46 4.61 46.0 457 4550 45500 4.5 104  4.5 105  

(d)*2 
r1 	 5 *3 	10 	20 	50 	100 500 	1000 

Qw  AEM 	61.7 51.8 48.3 46.5 45.9 45.5 	45.46 
Ow (5.59) 	52.4 50 	48.1 46.6 46.0 45.5 	45.46 

1 2 " see table 5.3 

In cases where the direction of the crack is not along a radial, it appeared 
from test computations that the effect of the crack on the abstraction 
rate of the well remains about the same as that of a crack along the 
radial that fits in the same annular domain. This means that expression 
(5.59) can be used also for an arbitrary situated crack. 

The effects of several cracks on the abstraction rate of a well can be 
added as long as the cracks act independent. This is confirmed by test 
computations of one of which the results are presented in table 5.5. 

In table 5.5, the flux of a well is presented for five cases in which 
respectively 0, 1, 2, 3 and 4 cracks are situated close to the well. The 
four cracks are defined along the +x, +y, -x and -y direction respectively, 
so their effects are as independent as possible. The crack in figure 5.2.23 
has a transmissivity that is relatively large with respect to the product of 
its length and the hydraulic conductivity of the aquifer (cc c  in expression 
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(5.40 b) ), which means that the effect of the crack is not limited by its 
transmissivity but by its length (see the analysis in the paragraph 
following expression (5.41)). From the distribution of the heads in this 
figure, it is concluded that this crack acts within a quarter of the domain. 
Because the four cracks in the computations are shorter than in the case 
of figure 5.2.23 and are situated along the main axes, they act also 
within a quarter of the domain and act independently. 

Table 5.5 Computed abstraction rates of wells affected by 0,1,2,3,4 
independently acting cracks 

kcrBcr  =1000 m2/d, -cr  =100 m, k=10 mid. rref  =1 000 m, rw  =1 m, H=50 m, Pref - Pw =10 m 
well nr. of abstraction abstraction abstraction abstraction 
identifier cracks rate in m 3 /d rate in m 3 /d rate in m 3 /d rate in m 3 /d 

r1 =lOm r1 =50m r1 =lOOm r1 =OOm 

0w,0 0 546.7 545.7 545.7 545.7 

0w1 1 565.9 549.7 547.3 545.85 

0w,2 2 584.1 553.6 548.8 545.97 

0w,3 3 597.8 557.1 5503 546.07 

Qw,4 4 610.3 560.5 551.8 546.16 

The factor by which the abstraction rate changes due to the addition of 
each crack appears to be almost constant (table 5.6). From this it is 
concluded that the effect on the abstraction rate of the well of addition 
of each additional crack can be estimated by recurrent use of (5.59). 

Table 5.6 Comparison of following from the computed values in table 
5.5 with the result of expression (5.57b). 

kcrB cr  =1000 m2/d, -cr  =100 m, k=10 mid, ref  =1000 m, rw  =1 m, H=50 m, cref - Tw =10 m 
Ratioofwells y,ri=10m 7,rl=5Om 7,ri=10Om y,ri=50Om 

1.037016 1.007330 1.002932 1.000274 

w,2"Qw1 1.032161 1.007094 1.002740 1.000219 

0w,3'0w2 1.023454 1.006322 1.002733 1.000183 

w,4"w,3 1.020910 1.006103 1.002725 1.000164 
average Yc  from 
AEM computations 1.028365 1.006712 1.002782 1.000210 

from (5.57) 1.025285 1.007551 1.002369 1.000124 
relative error (see text) 0.003004 0.000832 0.000412 0.000086 

This means that y should be raised to the power equal to the number of 
cracks in the annular domain around the well. 

= y QW,0 	 I = 1,2,.. 	 (5.60) 

where i is the number of independently acting cracks inside one annular 
domain around the well. 

In table 5.6, the results of expression (5.60) are compared with the average 
factor resulting from test computations. The last row of table 5.6 represents 
the relative error, which is defined as Pyc  computed - 	(5.57)I/y (5.57). 
Considering the complexity of the poblem and the possible inaccuracies in 
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the computed values, the relative errors indicate a good agreement 
between the computed values and the results of (5.60). 

Cracks in different annular domains generate different values of y• From 
the analysis above it is admissible that their effects can also be included 
using the recurrent relation (5.60) with different ys for different 
annular domains, as long as they act independently. 

This analysis shows that the effects of arbitrary situated cracks on the 
abstraction rate of a well can be predicted as long as the cracks act 
independently. The actual effects of the cracks on the abstraction rate of 
the well are relatively small as long as the cracks are not really close to 
the well. In general the effects are even so small that they can be 
neglected compared to the inaccuracies generated by the other elements 
in a model of analytic elements (compare table 5.1). 

Because cracks increase the transmissivity in one direction, several 
parallel cracks might be used to generate anisotropic behaviour in axial 
symmetric flow. The effect of each of the parallel cracks on the axial-
symmetric flow can be determined by using its effect on the 
transmissivity in the annular domain in which the anisotropy should be 
generated. The representative transmissivity generated by all cracks in 
this annular domain should be equal to the desired representative 
transmissivity following from the desired anisotropy. Doing this, the 
properties of the cracks are defined in such a way that the desired 
anisotropy is generated. However, it is a rather complex procedure to 
find the right properties of the crack. The procedure is very sensitive to 
the distance between the well and the closest crack. From modeling 
experience, it is concluded that it is a hard job to use cracks for 
anisotropic behaviour and that leaky walls are to be preferred to model 
anisotropic behaviour. 

5.3 	Combinations of two analytic elements of different types in a 
single aquifer 

5.3.1 A qualification of each combination of two types of analytic 
elements and a definition of error types 

The analysis of the individual elements in section 5.2 can be used to 
analyse the interaction between each two types of elements described in 
chapter 3. In a model, each analytic element can be specified 
independently of all the other elements. But, not every specification 
makes sense. In order to derive a proper model, elements should be 
specified according to rules that are based on underlying mathematics 
and physical reality. In section 5.3, each possible combination of two 
types of analytic elements is described and analyzed. 
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Analytic elements can be combined in six different ways 
1 - 	nested * = one within the other, 
2 - 	at the same place = ccvering each other completely, 
3 - 	crossed * = (partly) overlapping each other 
4 - 	linked * = be connected at tips (lines) or at sides (areas), 
5 - 	close = close together but not connected 
6 - 	free = fa away from each other 
( 	= case presented in figure 5.3.1). 

	

nested 	 crossed 	 linked 

V 	 - 

. 	A 	 r  

I 

	

- 	 - 

area-sink 	line element 	well 	 inhomogeneity 

Figure 5.3.1. 	Examples of nested, crossed and linked elements 

In modeling practice, it appears that elements are close' together if the 
distance between their control points (chapter 3) is smaller than about 
L/100, where L is the length of a line-segment or the length of the largest 
diagonal of an area-sink. Elements are situated 'free" if the distance 
between their control points is larger than about L. In this, the effects of 
elements with extreme strengths are taken into account. In between these 
situations, the interaction between elements gradually changes from free 
to close. Free elements can easily be combined and therefore these 
combinations are not discussed further in this section. 

Based on both the theory and the authors experience, some general rules 
for the combination of analytic elements can be given: 
1 - Elements with a given strength can easily be combined with each 

other. 
2 - Two different heads prescribed at control points close together express 

physically impossible boundary conditions (except near weirs). 
3 - DROOT type elements (cracks, drains, canals, leaky walls and 

impermeable walls) are difficult to combine. 
4 - Free elements easy to combine. 

All combinations of two analytic elements have been tested and qualified 
in table 5.7. If, in this entire section, two head-specified elements are 
discussed, these heads are presunied to be different. In the case of nested 
elements, each two elements can oe interchanged as long as it is possible 
by their shapes. 
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In the next parts of this section, the combinations are discussed following the 
rows of table 5.7. So, the well (all types of table 5.7) is discussed in 
combination with all types of elements, the line-sink (all types) in combination 
with all types of elements except the well, the area-sink (all types) in 
combination with all types of elements except the well and the line-sink, etc. 
The canal is discussed together with the crack and the drain because in most 
combinations these elements act more similar than the canal and the line-sink 
(as compared in subsections 5.2.6 and 5.2.7). This is because of the strength 
distributions defined along these elements (subsection 3.3.4). 

In complicated situations, the leaky and impermeable walls as well as the 
cracks, drains and canals should be replaced by curvilinear elements 
(subsection 4.2.2), which are more flexible and reliable in modeling than the 
original droot elements of subsections 3.3.4 and 3.3.5. However, these 
original elements are dealt with in subsection 5.3. 

When modeling with analytic elements, three types of errors may occur. The 
following types of errors are listed in increasing order of importance of the 
geohydrological knowledge and in decreasing order of importance of the 
computation technique. 

Numerical errors occur due to numerical problems, which in the case of 
the AEM can be problems of not converging series in the computation of 
mathematical functions, problems in finding points of intersection, 
problems due to the rounding off of numbers, etc. Numerical errors can 
be solved by the developer of the technique only and are not dealt with 
in this thesis. 
Physical errors are due to wrongly chosen types or sizes of analytic 
elements or to wrong combinations of analytic elements and do not exist 
in modeling with other techniques. These errors show up in the form of 
heads and/or fluxes which are impossible in natural conditions, e.g. 
heads are computed outside the possible range of values. Physical errors 
form a main subject in this section. The most important ones are shown 
together with an indication of how they can be solved. 
Modeling errors are caused by using wrong geohydrological constants, 
wrong geohydrologic schematization or too coarse distributions of 
elements. In general, these errors may occur regardless the modeling 
technique. The aspect of distribution of elements is treated explicitly in 
section 5.4 and the relation between schematization and analytic 
elements is discussed in chapter 8. 

Both the physical and modeling errors are visible in distributions of the head 
and flux. They may occur at the same place and can only be recognized by 
understanding the cause of these errors. In general, a combination of 
elements can be checked by analyzing both the head distribution (or 
distributions in adjacent aquifers) and the element strengths. A general rule 
for finding the cause of errors is that most of the unexpected behaviour of 
elements occurs inside or near the elements themselves. Causes of errors are 
rarely found at large distance of the place where they show up. 
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5.3.2. Combinations with wells 

Wells and wells 

The combination of wells is classical knowledge (see e.g. Raudkivi & 
Callander 1976, Bear 1979, Strack 1989). Wells with given strength can 
be combined in any way. Wells with opposite strength or different heads 
generate a dipole-like behaviour when placed close together (subsection 
3.3.3). Head-specified wells cannot be put at the same place, because 
they generate conflicting boundary conditions. 

Wells and line-sinks 

Combinations of wells and line-sinks are easy to perform, except if the 
control point of a head-specified line-sink is close to a head-specified well. 
This will be illustrated by the following example. 

A head-specified well close to the control point of a head-specified line-
sink will cause a dipole-like behaviour (both heads are assumed to be 
different, subsection 5.3.1); the strength of both the line-sink and the well 
will become extreme in order to maintain the specified heads at their 
control points. Along the line-sink, the extreme strength remains constant 
(or linear) and often causes a physical error. 

6. 

1000 m 

kH = 2500 m2/d 	PweIl = 30 m 	Pline-sink = 10 m 	 500m 

Figure 5.3.2. 	A well and a line-sink causing a physical error (a) and 
the same problem modeled without this error (b). 
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Table 5.7. A qualification of combinations of analytic elements 

elem- combin well line- area- inh res imp crk drn can 

ent -ation sink sink 

qh qh qh 

ne . +0 +0 + - - - 

well sp + +  

q cr . 	. . . 	. . . . 

Ii ++ +0 +0 - - - - 

Cl ++ +0 +0 0 - - 0 0 - 

ne +! +0 + - - 

well sp  

h cr . . . . 

Ii - +0 +0  

ci 0 +0 +0 0 - - - - - 

ne ++ ++ + 0 0 0 

line- sp + + - 	. - I + + 0 

sink cr 00 00 0 + 1 - - - 

q Ii ++ ++ 0 I 0 0 0 

Cl +0 +0 0 - - 0 0 0 

ne +0 + 1 0 0 I 

line- sp I . 	. - + + 

sink cr 00 0 + ! - - 

h Ii + ++ 0 ! I 0 0 

Cl 0 +0 0 - - 0 0 0 

ne ++ + 0 0 0 0 

area- sp ++ . . . . 

sink cr +0 0 0 0 0 0 

q Ii +0 + + + + + + 

ci +0 + + + + + + 

ne + 0 

area- sp  

sink cr - - - - 

h Ii 0 + + + + + 0 

Cl 0 + + + + + 0 

ne + 0 0 0 0 0 

inh sp + 

cr - - - - - 

Ii + I 

cI + 0 0 0 0 0 
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Tabel 5.7. (continued) 

elem- 	combin 	well 	line- area- inh 	res 	imp 	crk 	drn 	can 

ent 	-ation 	sink sink 

qh 	qh qh 

ne 

res 	sp I 

cr 

Ii 

- 	- 	- 	- 	- 

ci + 	+ 	+ 	+ 	+ 

ne ! 
imp 	sp 

cr 

Ii 

- 
I 

ci + 	+ 	+ 	+ 

ne 

crk 	sp I 

cr 

Ii 

0 . 	0. 	O 

ci + 	+ 	+ 

ne 

drn 	sp 

cr 0. 	O 

Ii 

ci + 	+ 

can 	ne 

sp 

cr 

ci + 
(1995) these elements need to be adapted for these combinations. 

Legend 

inh 	= inhomogeneity res = leaky wall 	 - 
imp = impermeable wall crk = crack 
drn 	= drain can = canal 

q 	= specified strengffi h = specified head (+ resistance for area-sink) 

ne 	= nested + = easy combination 
sp 	= at the same place 0 = combine with care 
cr 	= crossed/intersected - = tricky combination 
Ii 	= linked = physically or mathematically wrong 
cI 	= close = impossible because of element shape 
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In figure 5.3.2-a, a head-specified well is placed close to the control point 
of a head-specified line-sink. (For this example, Strack's AEM program had 
to be misled because, since 1991, such a short distance between control 
points with specified heads is not allowed in the program.) The head of the 
line-sink is 10 m and the head of the well is 30 m. In this situation, the 
computed heads should be between the reference level 0 m and the level 
of the well 30 m. But in the case of figure 5.3.2-a, heads much lower than 
0 m are computed at the ends of the line-sink. Also, at larger distance from 
the elements the groundwater flows toward both elements instead of 
flowing away from the elements. The pattern of the isolines in figure 
5.3.2-a is typical for a physical error. In modeling practice, it is said that the 
model is "blown up locally, because too extreme values occur in the head 
and flow distribution. 

The situation of figure 5.3.2-a can be explained as follows. If the line-sink 
had been stand-alone, it should have generated a flow into the aquifer as 
its head of 10 m is above the reference level. By the addition of the well a 
much higher head (of about 30 m) is generated close to the control point 
of the line-sink, which causes the line-sink to abstract (large amounts of) 
water. Because the strength along the line-sink is constant, this abstraction 
rate occurs also at places along the line-sink where the head in the vicinity 
is not so high and where the flow should be not so extreme. 

The physical error is overcome by adding control points and by putting 
them at sufficient distance, e.g. by splitting up the line-sink. Then, no 
extreme fluxes are computed and reasonable heads are found (figure 
5.3.2-b). Also, the application of (in this case at least two) linear line-sinks 
will lead to an increase of the accuracy because the flux in the element can 
adapted better to the changes occurring. 

Wells and area-sinks 

The behaviour of a well combined with an area-sink is highly comparable 
to that in the case described above with a line-sink. All combinations of 
area-sinks and wells are easy to implement except if the control points of a 
head-specified well and a "Cauchy' (specification of both the surface 
water level and the resistance, subsection 3.3.7) area-sink are close 
together. 
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kH = 2500 m2Id PweII = 10 m Parea-jnk = 0 m 	0areasnk = 400 d 	 1000m 

Figure 5.3.3 	A well and an area-sink causing a physical error (a) and 
the same problem modeled without this error (b). 

As an example of this latter case, a well with head -10 m is placed close to 
the control point of an area-sink (2000 x 2000 m 2) with a surface water 
level of 0 m (equal to the refererce level) above a layer with a resistance of 
400 d (figure 5.3.3-a). The computed heads should be in between -10 m 
(well) and 0 m (reference level / surface water level). However, figure 
5.3.3 shows computed heads far above the reference level which indicate a 
physical error. 

The causes of this error are similar to that in the case with the line-sink. 
The head in the aquifer generated by the well close to the control point 
causes the area-sink to generate a strong infiltration. Because of its 
constant strength, the area-sink generates strong infiltration also further 
away from the well and causes a head above the reference level. 

The physical error of figure 5.3.3-a is overcome by putting the control 
points of the elements at sufficient distance, e.g. by splitting up of the 
area-sink into four parts (figure 5 3.3-b). The accuracy of this model can 
be improved further by refining the area-sinks around the well. 

In fact, the example of figure 5.3.3 shows a well in a semi-confined 
aquifer. In this situation, the vertical flow through the separating layer 
varies strongly with the distance to the well. An area-sink with constant 
strength can not account for this oroperly and should be refined around 
the well. But even then, the strength distribution generated by the area-
sinks will not be exact. To model this variation of flux near a well exactly, 
the so-called Bessel-element (subsection 4.2.3) has been developed. This 
element generates the exact distribution of the vertical flow through the 
separating layer. 
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Figure 5.3.4 	A well and an area-sink causing a physical error (a) and 
the same problem modeled properly with a Bessel 
element (b). 

Figure 5.3.4 shows an example of this. Figure 5.3.4-a shows the head 
distribution generated by the area-sink of figure 5.3.3-a and by a well 
with a given abstraction rate of 1600 m 3 /d. The specification of the well 
is changed, because the Bessel element has been developed yet to 
account for wells with given abstraction rate only. The abstraction rate is 
taken about equal to the abstraction rate of the well in the case of figure 
5.3.3-b, because in that case the abstraction rate will be more accurate 
than in the case of figure 5.3.3-a. The strength of the area-sink in the 
case of figure 5.3.4-a is smaller than in the case of figure 5.3.3-a, 
because the rate of the well in this case is smaller than the abstraction 
rate of the well in that case. Therefore, the dipole-effect" between the 
well and the area-sink is smaller, but figure 5.3.4-a still shows the 
physical error with heads above 0 m. 

Figure 5.3.4-b shows the exact distribution of the head. From the 
comparison of figures 5.3.4-b and 5.3.3-b, it can be concluded that the 
refinement of figure 5.3.3-b does not lead to an accurate result yet, so a 
modeling error remains in this latter figure. If only constant strength 
area-sinks are used to model this situation (figure 5.3.3-b), further 
refinement of the area-sink mesh is needed to approach the accuracy of 
figure 5.3.4-b. 

Wells and inhomogeneities 

Wells and inhomogeneities combine well if the distribution of the line-
segments of the inhomogeneity is adapted for the presence of the well. A 
head-specified well should not be placed at the boundary of an 
inhomogeneity because then the well is replaced close to the boundary of 
the inhomogeneity by Strack's program and it is not a priori known 
whether that means inside or outside that boundary. In such a case, the 
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strength of the head-specified well is computed belonging to the 
transmissivity in its vicinity which means both inside and outside the 
inhomogeneity. 

oc oc 

1.0 	1 

05 

0 
-2 	-1.8 	-1.6 	-1.4 	-1.2 	-1 	-0.8 	-0,6 	-0.4 	-0.2 	0 

- a = .01 	a, = .02 	0 a, = .05 	 Ln 
parabola 1 	. parabola 2 	parabola 3 

Figure 5.3.5 	Ratio between the flux distribution of (5.1) and 
a parabolic strength distribution between x/a=.01 
(1n(x1a)=-2) and x=a (ln(x/a)=O). 

The strength distribution of each inhomogeneity segment is parabolic in terms 
of the jump in the potential (expression (3.30) and figure 3.3.9). The 
corresponding flux distribution is linear (because the flux is the derivative of the 
potential). Obviously, this flux distribution can match the distribution generated 
by the well (expression (5.1)) only by using small elements close to projection 
point of the well. 

A theory to adapt the strength distribution of the inhomogeneity for a well in its 
vicinity is known (Strack, oral communication, 1991), but is not implemented yet. 
Next, it will be shown that the peak in the flux distribution across a line-segment 
(see figure 5.2.1) can be accounted for accurately using a parabolic distribution in 
terms of the flux, which means a third order strength distribution of the line- 
segments of the inhomogeneity. In figure 5.3.5, the ratio between the flux across 
a line-segment generated by the well (according to expression (5.1)) and a 
well-chosen parabolic distribution is presented along 0 !~ x :~ a, where 
x = 0 is the point closest to the well as shown in figure 5.2.2 and a is equal to the 
distance between the well and the line-segment. From figure 5.3.5, it can be 
concluded that the flux distribution close to projection point of the well can be 
approximated quite well by the parabolic distribution of the flux (which follows 
also directly from (5.1) for x a). 

In figure 5.3.6., a well (h = 10 m) is situated near an inhomogeneity in which the 
transmissivity is ten times lower (250 m 2/d) than outside. The distribution of the 
control points near the well is as described above and leads to a good result in 
the head and flux ditribution. 
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From modeling experience and from the example of figure 5.3.6, it follows 
that the segmentation of the present inhomogeneities (with a parabolic 
distribution for the jump in the potential) should be symmetrical around the 
point of projection of the well (figure 5.2.2) and that the segments starting 
from there should extend to about the point of inflexion, which is generally 
approximated at x = a. For x a,  the flux distribution becomes 
smoother and smoother and can be modeled using longer and longer line-
segments. As a general rule following from modeling practice, the length of 
each next line-segment can be increased by a factor 2. 

I 	

"gmentation point 

200 

kH = 2500 m 2 Id 	kjnhHinh = 250 m2/d 	PweII = 10 m 

Figure 5.3.6 	Accounting for a well near an inhomogeneity by 
adapting the lengths of the line-segments. 

We/Is and leaky or impermeable walls 

Except if the elements are positioned free, a well close to a leaky or 
impermeable wall is tricky or physically wrong in a model (subsection 
5.3.1), 

In figure 5.3.7, a well with a head of 30 m is placed close to a leaky wall 
(subsection 3.3.5) with a resistance of 1000 d. As the length of the leaky 
wall is 1500 m and k = 50 m/d the value of v defined in expression (5.26) 
is about 30 and so the analytic element should be almost impervious. 
However, the computed head distribution in figure 5.3.7-a shows 
considerable leakage through the leaky wall near the welt. Adaption of the 
number of control points does not lead to better results in terms of the 
enclosing effect of the leaky wall. From this and from other experiences it 
is concluded, that a real peak in the distribution of the flux (see subsection 
5.2.1) can hardly be accounted for by the strength distribution of a straight 
leaky wall as described in subsection 3.3.5. However, using the curvilinear 
element of type leaky wall (subsection 4.2.2), proper modeling results can 
be derived as shown near the well in figure 5.3.7-b. 
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Figure 5.3.7 	Distribution of the head generated by a well (a) near a 
leaky wall and (b) near a curvilinear element type leaky 
wall. 

In figure 5.3.7-b, the (straight) line-segments of the curvilinear element are 
distributed using the rule for the distribution of the line-segments of the 
inhomogeneity mentioned above. It can be concluded from the distribution 
of the heads in figure 5.3.7-b, that the curvilinear element of type leaky 
wall really generates an (almost) impermeable barrier and accounts 
accurately for the distribution of the flux generated by the well. 

Wells and canals, cracks or drains 

In general, wells and canals, cracks or drains should be combined with 
care, except when the elements are modeled "free". 

well 	
wel 	

16 	

13w 
12m 

200w 

kH = 2500 m2/d 	PwelI = 30 m Pyanal = 10 m 

Figure 5.3.8 	Behaviour of a head-specified well close to a canal (a) 
and close to a drain (b). 
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A head-specified well close to a canal may lead to physical errors similar to 
that in the case of a head-specified line-sink, because in both cases two 
different heads are specified close together. In figure 5.3.8-a, a well with 
head 30 m is defined closely to a canal with head 10 m. The canal reacts 
similar to the line-sink in the case of figure 5.3.2-a, but the effects in terms 
of heads and fluxes are relatively larger, because the canal in figure 5.3.8-a 
is about 10 times shorter than the line-sink in figure 5.3.2. Increasing the 
length of the canal causes an increase of the blowing-up' effect. Similarly 
to in the case of the leaky wall (DROOT-type) in figure 5.3.7-a, the 
problem of figure 5.3.8-a can be modeled properly by using a curvilinear 
element. 

In subsection 5.2.6, the effect of the crack on the abstraction rate of the 
well has been analyzed. The combination of a well and a crack or drain is 
complex only, because of the strength distribution inside the crack or drain. 
In figure 5.3.8-b, a head-specified well close to a drain is shown. In this 
case the well is situated in the middle of the element, which generates a 
flow distribution inside the drain that is different from that in the case of the 
crack in figure 5.2.23. In the drain at both sides of the well, both inflow and 
outflow takes place. In figure 5.3.8-b, the distribution of the head (about 
constant) along the drain shows that the behaviour is as expected. 

5.3.3 Combinations with line-sinks 

Line-sinks and line-sinks 

Line-sinks can be combined easily in any way except in two cases. The first 
case concerns two head-specified line-sinks of which the control points are 
close to each other. In such a situation, the reaction of each of the line-sinks 
is similar to the reaction of the line-sink in figure 5.3.2-a (physical error), 
because each line-sink acts similar to the well in this figure with respect to 
the other line-sink. 
The second case concerns two head-specified line-sinks overlapping 
(crossing) each other. Then, two surface water levels are specified the 
overlapping part, which is physically impossible. The strengths of both line-
sinks are superimposed and do not comply with the specified conditions. 
Actually, line-sinks should not overlap at all in a model, because such 
situations do not exist in reality. 

Line-sinks and area-sinks 

Line-sinks and area-sinks can be combined easily except in the cases with 
specified heads "close or at the same place". 

When the control points of a head-specified line-sink and of a "Cauchy" 
(subsection 5.3.2 part wells and area-sinks") area-sink are close together, 
extreme fluxes are computed in both elements which lead to errors in the 
head and flux distribution (physical error). This behaviour is shown in figure 
5.3.9-a, where the control points of a line-sink (with head of 10 m) and of a 
Cauchy area-sink (with surface water level 20 m and resistance of 40 d) are 
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placed close together. The heads in the aquifer should be in between 0 m 
(reference level) and 20 m (surface water level). The computed heads in 
figure 5.3.9-a exceed the expected range significantly and indicate a physical 
error. The cause of this error is similar to that in the case of the area-sink and 
the well in figure 5.3.3-a. This error is removed by placing the control points 
of the elements further away from each other. In figure 5.3.9-b, both the 
area-sink and the line-sink are divided into two equal parts. 

Qt 
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/ 

	

10000 	
area-sink 

	

-- 	 . 	control point of line sink 

b 	
control point of area-sink 

a  

kH = 2500 m2/d 	Pline-sink = 10 m 	Parea-sink = 20 m 	Careasnk = 40 d 

Figure 5.3.9 	A line-sink and an area-sink causing a physical error (a) 
and the same case modeled without that error (b). 

In reality, surface waters often cross polder areas. Then, a modeling option 
might be that line-sinks overlap area-sinks. This should be avoided because 
the heads in the elements are generally different and actually two boundary 
conditions at the place of the line are defined in such a situation, which is 
physically impossible. 

Line-sinks and inhomogeneities 

A line-sink and a line-segment of an inhomogeneity can be put at the 
same place (because it has been tested), but then the same occurs as in the 
case of the well and the inhomogeneity. The line-sink is replaced by 
Strack's program and it is not a priori known whether that means inside or 
on outside that boundary outside the inhomogeneity. This situation should 
be avoided in modeling. 

Line-sinks linked with or close to the boundary of an inhomogeneity 
should be modeled with care. The distribution of the line-segments of the 
inhomogeneity should be in accordance with the distribution of the flux 
across the line-segments generated by the tine-sink. This latter distribution 
has been discussed in subsection 5.2.2. 
If a tine-sink is approximately parallel and close to a line-segment of an 
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inhomogeneity, the strength distribution of the line-segment can account 
well for the flow distribution generated by the line-sink. In this case, the 
line-segment of the inhomogeneity can be about as long as the line-sink. 
If a line-sink in normal direction to a line-segment of an inhomogeneity is 
close the line-segment, the distribution of the line-segments should be 
similar to that in the case with a well, because the flow near a tip of a line-
sink is comparable to that near a well. 

segmentation point 
control point of line-sink - - 

bOOm 

kH = 2500 m2 /d 	kinhHinh = 250 m2fd 	Pline-sink = 10 m 

Figure 5.3.10. 	A line-sink crossing the boundary of an inhomogeneity 
with a physical error (a) and without physical error (b). 

In general, a line-sink should not cross a boundary of an inhomogeneity, 
because then the constant strength of the head-specified line-sink is neither 
belongs to the transmissivity outside nor to the transmissivity inside the 
inhomogeneity. As an example, figure 5.3.10-a shows the computed heads 
generated by a line-sink with head 10 m crossing the boundary of an 
inhomogeneity of which the transmissivity inside is ten times lower than 
outside. The computed heads should be in between this head and the 
reference level of 0 m. 

Inside the inhomogeneity, the computed head is higher than 10 m 
(physical error). This is caused by the following. The flux outside the 
inhomogeneity needed to generate the 10 m is much greater than the flux 
needed inside the inhomogeneity. This great flux generates values of the 
head that are higher than the surface water level which show a physical 
error. After splitting up the line-sink at the boundary of the inhomogeneity, 
the strengths in both parts are computed according to the transmissivities 
inside and outside the in homogeneity and the physical error overcome 
(figure 5.3.10-b). 

120 



Line-sinks and leaky or impermeable walls 

Line-sinks may cross leaky walls but not impermeable walls because in the 
latter case the no-flux condition inside the element is disturbed (see 
subsection 3.3.5). Also in this case, the effect of the leaky wall becomes 
not clear, because the line-sink generates a hole" in the leaky wall. 

Line-sinks may not overlap leaky or impermeable walls, because then 
mathematical inconsistencies occur. If the tip of the line-sink is very close 
to a leaky or impermeable wall, both elements can hardly be combined 
similar to the case of a well close to a wall (subsection 5.3.2). If the line-
sink is almost parallel to a leaky or impermeable wall, the combination is 
less difficult than if the elements are perpendicular to each other. In the 
case of parallel elements, the line-sink generates a smooth flow 
distribution at the place of the leaky or impermeable wall. 

Line-sinks and canals, cracks or drains 

Line-sinks may (partly) overlap cracks, drains or canals or be nested and 
linked with these elements (as long as no head conflicts occur), but the 
meaning of such combinations in reality is difficult to determine. 
A head-specified line-sink crossing a canal leads to a physical error, similar 
to the case of two head-specified line-sinks but the effects in terms of 
heads and fluxes will be more pronounced. 

A head-specified line-sink at the same place as a drain forms a canal. Also, 
a line-sink can be at the same place as a crack. In general, these 
combinations will lead to good results. 

5.3.4 Combinations with area-sinks 

Area-sinks and area-sinks 

Area-sinks can be defined on top or at the bottom of an aquifer. Here, 
only cases with area-sinks on top are discussed, which are similar to cases 
with area-sinks at the bottom. The behaviour of combinations of area-sinks 
at both top and bottom of the aquifer will be discussed in section 5.5. 
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2000 m 

a 	 b 

(a) kH = 25 m 2 /d (b) kH = 2500 m 2 /d 

Careasink = 1000 d 	left-hand-side: Parea-sink = -10 m 	right-hand-side: Parea-sink = 10 m 

Figure 5.3.11 	Computed heads in the case with the width of area-sinks 
in the main flow direction much larger than (a) and about 
equal to (b) the characteristic length. 

Area-sinks with given strengths can easily be combined in any way. Cauchy area-
sinks can easily be close together or linked. Two Cauchy area-sinks may not be 
nested, may not be crossed and may not be at the same place because these 
situations are physically impossible. 

In subsection 5.2.3, the size of an area-sink is related to the accuracy of its 
strength and the head in the aquifer below the element. The size of the 
area-sink is specified in terms of the width of the element in the main 
direction of the flow in the aquifer. The preferred width of the element 
(with respect to the accuracy) can directly be used in a model with a mesh 
of area-sinks. 

In figure 5.3.11, two models of area-sinks with different ratios of L/? (see 
subsection 5.2.3) are presented, where L is interpreted as the width of the 
area-sink in the main direction of the flow and 2 is defined in expression 
(4.1). The surface water levels of both left and right area-sinks are -10 m 
and 10 m respectively. The reference level is 0 m and the reference point is 
at the right hand side of the area-sinks, which explains the non-symmetric 
head distribution in figure 5.3.11. In the case of figure 5.3.11.-a, the 
transmissivity is 100 times smaller than in the case of figure 5.3.11-b and 
L/X is about 13. According to the analysis of subsection 5.2.3 (table 5.1), 
the error in the flux of the area-sinks will be large. The computed heads in 
the aquifer are above the highest and below both the lowest specified 
surface water levels, indicating a physical error. In the case of figure 
5.3.11-b, the ratio L/X is about 1.3 and good results are found in the 
fluxes of the area-sink (compare table 5.1) and in the presented head 
distribution. 
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Area-sinks and inhomogeneities 

Area-sinks can easily be combined in any way with inhomogeneities, except 
when the elements are partly ovsrlapping (crossing) each other. Because 
the strength of the area-sink is either valid outside or inside the 
inhomogeneity, it is always wrong and a physical error can be expected. 
Figure 5.3.12-a shows an example of this. 

kH = 2500 m 2 /d 	kj fl hHj fl h = 125 m2/d 	Parea-sink = 10 m 	Carea  sink = 400 d 

Figure 5.3.12 	An area-sink crossing an inhomogeneity (a) and the same 
domain covered by two area-sinks (b). 

The inhomogeneity generates a trarsmissivity that is 20 times lower inside than 
outside. The area-sink partly overlaps the inhomogeneity and is defined with a 
surface water level of 10 m. Inside the inhomogeneity, the computed heads are 
higher than 16 m (physical error). The reason for this it that the strength of the 
element belongs mainly to the condaions outside the inhomogeneity ( because 
the control point of the area-sink is just outside the inhomogeneity) and this 
strength is too large inside the inhomogeneity. By adapting the strength 
distribution of the area-sink by splith -ig up the element into two parts covering 
the area inside and the area outside he inhomogeneity as shown in figure 
5.3.12-b, the two strengths lead to a result without physical error. 

Area-sinks and leaky or impermeable walls 

In general, area-sinks cause less pronounced behaviour at the corners than line-
sinks at the tips (see subsection 5.2.3). Therefore, leaky and impermeable walls 
can be combined more easily with area-sinks than with line-sinks. 
Area-sinks can be used with leaky-walls in any combination. If the presence of 
the leaky wall causes large differences with respect to the flow generated by the 
area-sink only, it can be desirable to split up area-sinks in a way similar to that in 
the case of figure 5.3.9-b. 
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Impermeable walls do not allow vertical flow on top of or at the bottom of their 
place (subsection 3.3.5). So, area-sinks (including those with given strengths) 
may not overlap with impermeable walls. In other situations these elements can 
be used similarly to leaky walls. 

Area-sinks and canals, cracks or drains 

Area-sinks can be used with cracks, drains and canals in any combination, except 
if two different (subsection 5.3.1) heads are specified at the same place. The 
latter occurs if a Cauchy area-sink overlaps a canal with a different level. The 
effects are most pronounced when the control points nearly coincide and give 
results comparable to those presented in figure 5.3.9-a for area-sinks and line-
sinks. If a crack, drain or canal causes large effects in the flow, it may be desirable 
to adjust the strength distribution generated by the area-sinks e.g. by refinement. 

5.3.5 Combinations with inhomogeneities 

Inhomogeneities and inhomogeneities 

Inhomogeneities can easily be nested and linked but cannot be crossed. In the 
latter case, the inhomogeneities should be redesigned in such a way that they do 
not cross. If a line-segment of an inhomogeneity is defined at the same place as 
a line-segment of another inhomogeneity, the coinciding control points can be 
merged, because only one jump in transmissivity is meant at that boundary. 
Control points of different inhomogeneities close together affect each other 
strongly and should be modeled with care or should be avoided. 

lnhomogeneities and leaky or impermeable walls 

Inhomogeneity boundaries that cross leaky and impermeable walls should be 
modeled with care. The larger the jumps in both elements the more accurate the 
strength distributions should be to account for the effects by both elements. The 
effects at the tips of leaky and impermeable walls 

desire careful adjustment of the boundary of the inhomogeneity in case they are 
close together. 

Inhomogeneities and canals, cracks or drains 

Canals, cracks and drains crossing inhomogeneity boundaries can be treated 
largely similar as line-sinks crossing inhomogeneity boundaries. The effects at the 
tips of cracks, drains and canals desire careful adjustment of the inhomogeneity 
in case they are close together. 

5.3.6 Combinations with leaky or impermeable walls 

Combinations of leaky or impermeable walls 

Leaky and impermeable walls can only be combined free or close together. The 
tip effects demand careful modeling in any combination. To concatenate these 
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elements, they should be replaced by line-segments of curvilinear elements 
(see subsection 4.2.2). 

Combinations of leaky or impermeable walls with canals, cracks or drains 

Leaky and impermeable walls and canals, cracks or drains can only be 
combined free or close together. Impermeable walls should not be crossed at 
all by canals, cracks or drains because the impermeable walls does not allow 
any inflow or outflow. Canals, cracks and drains crossing leaky walls are 
largely similar to cases with line-sinks crossing leaky walls and is not allowed. 

5.3.7 Combinations with canals, cracks or drains 

Crossing of canals, cracks and drains is tricky in any case. Crossing of canals 
cause two heads (with different levels) at one place and is physically wrong. 
By modeling canals closely together with different levels, the tip effects may 
simulate the groundwater flow around a weir. To concatenate these elements, 
they should be replaced by line-segments of curvilinear elements (see 
subsection 4.2.2). 

5.4 	Combinations with many elements in a single aquifer 

5.4.1 Example of area-sinks 

Area-sinks do not set constraints to the presence or the shape of adjacent 
area-sinks, because each element is defined independently of an other area-
sink. Therefore, a mesh of area-elements can be strongly different from 
meshes in models based on the finite element or the finite difference 
technique. schematization of the upper boundary are presented in figure 5.4.1. 

p=.5m 

po- , o 

nf,ItraOo,, 00006 ,,,/d 

Elil = domain of interest 	p = surface waterlevel 

kH = 125 m2/d 0area sink = 100 d 

Figure 5.4.1 	Model schematization and the domain of interest. 

In an aquifer with a rather low transmissivity of 125 m2 /d, groundwater 
flows from an infiltration area (downward flux of .0006 m/d) via an 
intermediate area with sloping surface water levels (p,between 0 and 10 m) 
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to a deep polder (with a surface water level of -5 m). Except in the 
infiltration area, a separating layer with a small resistance of 100 d 
is present on top of the aquifer. In the domain of interest (figure 
5.4.1), relatively strong flow occurs with steep gradients in the 
groundwater head. 

In the first model, a coarse mesh of area-sinks (average size of 
about 2 km 2 ) is used (figure 5.4.2). The polder is covered by three 
elements (level of -5 m) and in the intermediate region the surface 
water levels are averaged to 5 m. The general head distribution in 
the whole model is reasonable. The minimum and maximum heads 
and the 0 and -1 m isolines are approximately at the right place and 
the overall picture is smooth as expected. The gradient in the head 
distribution near the jump in the surface water levels is too small 
considering the actual value of ? (115 m). The inaccuracies are 
caused by the widths of the elements in the main direction of flow 
(see subsection 5.2.3) which are larger than 10 ?. 

Because the jump in the surface waters is not reflected in a proper 
way in the head and flux distribution, the area-sinks near this jump 
are refined in the second model (figure 5.4.3). The intermediate 
region is subdivided into a region with surface water levels at 6 m 
near the infiltration area and at 3 m near the jump. 

....J domain of interest 	1000 
	

200 m 

PT p = 5m 

Figure 5.4.2 	First model with a coarse mesh of area-sinks. 
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Figure 5.4.3 	Second model with refined mesh of area-sinks. 
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Figure 5.4.4 	Third model with a fine mesh of area-sinks in the domain 
of interest. 

The width in the main direction of flow of the area-sinks in the refined 
area is about 600 m, which is about 5X. By these changes in the model, 
the head distribution near the jump in the surface water levels has become 
more pronounced than in the first model. However, the isolines of the 
head indicate that the flow in the domain of interest is not reliable yet 
(arrows in figure 5.4.3-b). The maximum head in the model is lowered 
from 22 m in figure 5.4.2 to 19 m in figure 5.4.3, which means that the 
refinement has considerable effects on the entire model. 

In the third model, the elements near the jump in the surface waters 
(figure 5.4.4) are refined further down to widths (about 60 m) in the 
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direction of the main flow smaller than X (about 115 m). The head 
distributions in the polder and near the infiltration area changed not much 
compared to those in the second model (maximum and minimum levels 
remain about the same). In the domain of interest, the head distribution (e.g. 
the 0 m isoline) follows the corner (of 90 degrees) closely. Also, the fluxes in 
the domain of interest will be reliable, which follows from the analysis in  
subsection 5.2.3. 

Concluding remarks. 
- The first model is much too coarse because the computed head 

distribution is too flat near the jump in the surface waters and the isolines 
do not follow the place of the jump. 

- 	The head distribution in the entire model area changes in the second 
model. So, the changes in this model provide an important increase of the 
accuracy of the entire area. 

- 	In the third model, changes occur mainly in the part in which the 
refinement is made. So, the accuracy is further improved mainly locally in 
the domain of interest 

- The example shows that refinements are easy to implement in a model of 
analytic elements. 

5.4.2 Example of line-sinks and inhomogeneities 

This model describes groundwater flow in an unconfined aquifer with a sloping 
base. The elevation of the base causes a change in the saturated thickness and 
therefore in the transmissivity of the aquifer. The elevation in the base is 
changed step by step using three nested inhomogeneities generating three 
jumps in the base (figure 5.4.5). The natural groundwater recharge is simulated 
by an area-sink with specified downward flow of 0.0006 m/d over the entire 
region. The two rivers in the area are modeled by 12 line-sinks with specified 
heads (figure 5.4.5). The line-sinks have been split up close to the 
inhomogeneity boundaries in order to avoid the physical error presented in 
figure 5.3.10-a. In the consecutive steps in this example, the line-sinks remain 
the same. 

In the first model (figure 5.4.6), the boundaries of the inhomogeneities are 
modeled as coarse as possible, which means that control points are defined at 
the corners only. The computed head distribution shows physical errors at the 
long line-segments of the inhomogeneity (see arrows in figure 5.4.6). The 
strength distribution of these line-segments can not account for the variation in 
the actual flow. The edges in the isolines are typical of this physical error. 

In the second model (figure 5.4.7), the line-segments of the inhomogeneity are 
divided at the points where the line-sinks cross the boundary of the 
inhomogeneity and also long segments have been split up. After doing this, 
the distribution of the head does not show obvious errors. 

A further refinement of the inhomogeneity is shown in figure 5.4.8. All line-
segments have been split up further. There is no obvious difference between 
the head distribution in this third model and that in the second model. 
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In figure 5.4.9, the differences in the head between the third and second 
model are shown, which are really minor. From this, it is concluded that the 
second model is a good optimum between accuracy and computation effort. 

Based on this example and on extensive experience, the following conclusion 
can be drawn with respect to errors in the computed results. If a model does 
not clearly show physical errors, there is only a small chance that relevant 
physical errors have not been recognized in the model. The remaining errors 
may appear later only in those parts of the model in which almost no flow 
occurred during the calibration. 
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k = 1 mId 	B = base in m H = computed head - base Yarea-sink = -.0006 m/d 

Figure 5.4.5 	Model schematization. 
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Figure 5.4.6 	Computed head distribution in the first model. 
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Figure 5.4.7 	Computed head distribution in the second model. 
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Figure 5.4.8 	Computed head distribution in the third model. 
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Figure 5.4.9 	Differences in head between the second and third model. 
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5.5 	Combinations with elements in several aquifers 

5.5.1. Example on the shape of leakage area-sinks 

In a multi-aquifer system withou: abstractions, the distribution of the 
vertical flow is generated by the boundary conditions on top of the system. 
In such a system, it seldomly occurs that the vertical flux at the top of the 
aquifer is in opposite direction to the flux at the bottom of that aquifer. In 
general, the flux at the bottom of an aquifer will be smaller but in the 
same direction as the flux at the top. 

The vertical flux is constant per area-sink and jumps at the boundary of 
each area-sink. In figure 5.5.1, a section with area-sinks at separating 
layers is shown which have different shapes at the different levels. 

A 	A 	A 	I 

, 	, 	 V 

I 	 V 	V 

' y control point of area-sink 

Figure 5.5.1 	Scheme of secticn with area-sinks layers with different 
shapes at the different levels. 

In the centre part of figure 5.5.1, the flux through the area-sinks on top and at 
the bottom of the upper aquifer is in opposite direction due to the overlap of 
the analytic elements and not due to conditions based on reality. At that place in 
the aquifer, unexpectedly high values in the groundwater head occur (physical 
error), because of the influx from both sides of the aquifer. These fluxes in 
opposite direction originate from the analytic element distribution only and not 
from boundary conditions, transmisvities and resistances of the multi-aquifer 
system. Because a model should not generate situations with opposite flow by 
itself, the scheme of figure 5.5.1 is principally wrong. If such situations should 
occur in a model they should originate from the boundary conditions and the 
transmissivities and resistances in the model and not from accidental occasions. 
Therefore, it is stated that meshes of area-sinks should be equal in the different 
separating layers of a multi-aquifer model. The example in this subsection 
illustrates the effect of this physical error in a large model and how it should be 
overcome. 

In the example, the results of a model with non-equal area-sink meshes (the 
first model) is compared with the results of a similar model with equal area-sink 
meshes (the second model). The results have been exaggerated by taking L/2c> 
3 in order to show the different behaviour of both models. The models are 

131 



based on an preliminary version of a NAGROM sub-model. The upper aquifer 
has a low (Dutch circumstances) transmissivity of 200 m 2/d and the lower 
aquifer an intermediate transmissivity of 2000 m 2 /d. In figure 5.5.2, the mesh 
of Cauchy area-sinks on top of the upper aquifer of both models is presented 
including the values of the resistances and surface water levels. The domain of 
interest is surrounded by a heavy line. 
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Figure 5.5.2 	Mesh of area-sinks on top in 	both mode/s (see text). 

8000 m 

domain of interest 

Figure 5.5.3 	Mesh of leakage area-sinks in the first model (see text). 

Leakage area-sinks (subsection 3.3.8) are used to model the separating 
layer between two aquifers. In this example, the resistance of this 
separating layer is arbitrarily chosen as 100 d and is constant over the 
entire region in both models (which is different from the actual NAGROM 
sub-model). In the first model, the mesh of the elements on top of the 
model (figure 5.5.2) is different from the mesh of the leakage area-sinks in 
between the aquifers (figure 5.5.3). In figure 5.5.4, the distribution of the 
differences in the head across the separating layer between the two 
aquifers in the first model is presented in the area of observation. 
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Figure 5.5.4 	Computed differences in the head across the separating 
layer in the domain of interest of the first model (see 
text). 

The differences in the head are in the order of magnitude of 1 m. 
Such differences across a layer with a resistance of 100 d result in a 
vertical flow of .01 mId, whici is impossible under Dutch 
circumstances. The distribution of extreme values is strongly related 
to the overlaps of the area-sinks on top of the upper aquifer and 
between the two aquifers. 

In the second model both area-sink meshes are equal. In figure 
5.5.5, the differences in head across the separating layer in between 
the aquifers in the second model are presented, also in the area of 
observation. The computed differences in the head are in the order 
of magnitude of .01 m, which comply with the flow rates through 
such a layer with a resistance of 100 d under Dutch conditions. 

The effects generated by the difference in the shapes of the area-
sinks in the first model are unacceptable and very acceptable in the 
second model. From this example and from the experiences of the 
author, it is concluded that the meshes of leakage area-sinks in a 
model should be equal (particLlarly in cases where flow paths are to 
be computed). 
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Figure 5.5.5. 	Computed differences in the head across the separating 
layer in the domain of interest of the second model. 

5.5.2. Example of the vertical transfer of effects in a three aquifer model 

In a model with three aquifers, the transfer of effects through leakage 
area-sinks will be shown in terms of the head distributions. 

The vertical fluxes are generated by a well in the middle aquifer and 
transferred by equal meshes of area-sinks simulating the separating layers. 
The domain of interest (figure 5.5.6) is surrounded by a wide zone of 
elements. In the domain of interest, the widths of the area-sinks in the 
direction of flow are smaller than the largest ? (see Strack, 1989 pp.  172-
176) in each aquifer in order to comply with the rule L/2 :!~ 1 (subsection 
5.2.3). 

In the lower aquifer, the transmissivity of 2000 m2/d is diminished 
considerably to 20 m 2/d in the south-west half space (figure 5.5.7), which 
simulates the presence of a zone with a very low permeability. The 
resistance of the separating layer on top of this aquifer is 5000 d in the 
south-west half space (figure 5.5.7) and 5000 d in the north-east half 
space. 

In the middle aquifer with a transmissivity of 600 m 2 /d the well withdraws 
groundwater (30,000 m 3 /d) in the centre of the model (figure 5.5.6). The 
resistance of the separating layer on top of this aquifer is divided in a 
south-east domain in figure 5.5.8 with high resistance of 10,000 d and a 
north-west domain with intermediate resistance of 1000 d. 

In the entire upper aquifer, the transmissivity is 1200 m 2 /d. In the north-
west domain in figure 5.5.9, the resistance of 500 d of the top layer is 
lower than that in the south-east domain where it is 5000 d. For the sake 
of simplicity, the surface water levels are taken at 0 m (equal to the 
reference level) in all elements of figure 5.5.6. 
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.....J domain of interest 	8000 m 	 200 m 

Model area 	 domain of interest 

	

Figure 5.5.6 	Mesh of area-sinks in the model area (left) and in the 
domain of interest (right) with a well. 

k 3 H 3 =2000m2/d 

c 3 =500d 

boundary of inhomogeneity 

k 3 H 3 =20m21d 

5000 d 	 boundary with jump in c value 

N 
Model area 

	

Figure 5.5.7 	Transmissivity values in the model area in the lower 
aquifer and resistance values of the separating layer on 
top of this aquifer. 

1000 d 

k 2 H 2  = 600 m2/d 

c2 = 10000 d 	 boundary with jump in c value 

Model area 

	

Figure 5.5.8 	Transmissivity values in the model area in the middle 
aquifer and resistance values of the separating layer on 
top of this aquifer. 
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.. ........ .. .. 
es 

boundary with iump  in c value 

Domain of interest 

Figure 5.5.9 	Transmissivity values in the model area in the upper 
aquifer and resistance values of the top layer. 

The computed head distribution in the upper aquifer (figure 5.5.10) shows 
the effect of the difference in the distribution of the resistances of the 
upper two separating layers. The lowering in the head is less in the domain 
of the lower resistances, the north-west space in figure 5.5.9. 

In the lower aquifer, the effect of the inhomogeneity with the low 
transmissivity is clearly present in the head distribution of figure 5.5.11. 

In the middle aquifer, the head distribution shows the effects of the well 
combined with the reactions in both adjacent aquifers (figure 5.5.12). In 
the north-west quadrant, the low resistances of both separating layers 
above the middle aquifer cause the smallest lowering in the head. 

The relatively small lowering in the north-east quadrant is caused by the 
higher transmissivity in the lower aquifer. In the south-west and south-east 
quadrants, the opposite occurs as can be seen from the lowering of the 
head in these directions. 

This example shows that the distribution of the head (and also of the flux) 
in the middle aquifer of a three aquifer model is visibly related to the 
elements and their properties in the adjacent aquifers and separating 
layers. Errors in the head or flux may be caused by the analytic elements in 
all three aquifers. Often the relation can be found between these errors 
and a specific combination of elements in one of the three aquifers. 
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IT 
2000 m 

Domain of interest 

Figure 5.5.10 	Computed head distribution in upper aquifer in the 
domain of interest. 

H (( 

2000 m 
Domain of interest 

Figure 5.5.11 	Computed heaa distribution in the lower aquifer in the 
domain of interest. 

Domain of interest 	 -- 	 2000 in 

Figure 5.5.12 	Computed head in the middle aquifer in the domain of 
interest. 
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6 A NEW EXPRESSION FOR THE CAUCHY BOUNDARY 
CONDITION DESCRIBING THE INTERACTION BETWEEN 
MANY SURFACE WATERS AND A REGIONAL AQUIFER 

6.0 Summary 

In the model of the Netherlands (De Lange, 1991), large numbers of 
surface waters in intensively draiied regions are lumped over relatively 
large areas using a Cauchy bounlary condition. In this chapter, this 
boundary condition actually describes the interaction between the flow 
from or to many parallel equidistant surface waters in a phreatic top 
aquifer and the groundwater flow in the upper regional aquifer. The flow 
between these aquifers crosses a separating layer, which is included in the 
Cauchy boundary condition. New and simple expressions are derived for 
the two constants in this condition. The results of these simple expressions 
are compared with the results of other existing (Bruggeman, 1972) and 
new expressions based on different conceptual models including one with 
two aquifers. From these comparisons, it is concluded with respect to the 
simple expressions that: (1) the simplifications used in the derivation are 
acceptable; (2) the condition appled at the separating layer is preferred; 
(3) the behaviour of the interaction can be analyzed more clearly by using 
this new expression than by the existing accurate solution of Bruggeman 
(1972). 

Apart from this, it is shown that with a simple modification the new 
expressions can be used in the case in which the surface waters are in 
direct contact with both the top aquifer and the upper regional aquifer, as 
when they cut through the separadng layer. 

6.1 	Introduction 

In the general potential theory, a Cauchy boundary condition is a linear 
relation between the potential and its normal derivative (Bear, 1972). In 
groundwater flow analysis, the Cauchy condition (expression (3.35)) at the 
upper boundary expresses the relation between the leakage through a 
separating layer at the bottom of a surface water and the head in the 
aquifer below that layer (Bear and Verruijt, 1987). In groundwater 
modeling, the Cauchy boundary coidition is commonly used to simulate 
individual surface waters, lakes, etc with known resistances at their 
bottoms (McDonald and Harbaugh, 1984). 

NAG ROM covers the entire country of the Netherlands, 43,000 km 2 , of 
which large regions are intensively crained. These areas occur mainly in the 
lower part of the country (figure 6..1) and contain up to several hundreds 
of surface waters per km 2 . NAGROM is used for national water manage-
ment in which the individual effects of many of the surface waters are not 
of interest. Therefore, these effects are lumped in Cauchy boundary 
conditions applied over relatively large areas. In NAGROM, a Cauchy 
boundary condition expresses the interaction between many surface waters 
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in a phreatic top aquifer and the groundwater in the upper aquifer of the 
model (figure 6.1.2, upper part). For use in the model of the Netherlands, 
simple expressions for the constants in the Cauchy boundary condition have 
been derived. During the analysis of the applicability of the simple expres-
sions for the constants, comparisons have been carried out with other 
expressions, the most important of which are presented in this chapter. 

NORTH SEA 

BELGIUM 

GERMANY 

Area below mean sea level 

Figure 6.1.1 	Area below mean sea level in the Netherlands. 

For more than twenty years, Cauchy boundary conditions have been used 
in the Netherlands to model the interaction between surface water(s) and 
groundwater (Ernst, 1978; Van Drecht, 1982; Querner, 1993). Their 
derivations are mainly based on older conceptual models in vertical cross-
sections that have been used to determine the required spacing between 
parallel drains (Hooghoudt, 1936; Kirkham, 1958; Ernst, 1962; Dagan, 
1964). 
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I 	
aquifer 

—---- 1separating 
- 	 layer 

see de:ails below 	 1 

regional aquifer 

Figure 6.1.2 	Conceptual models for the Cauchy boundary condition 
based on (a) the drainage resistance and (b) the feeding 
resistance. 

Two conceptual models for the Cauchy boundary condition (comparable 
with expression ( 3.35)) will be distinguished. The main difference 
between these models concerns the meaning of the resistance between 
the surface waters and the groundwater in the upper aquifer of the 
model. 

In the first conceptual model, the (phreatic) top aquifer is the upper 
aquifer in the groundwater flow model (figure 6.1.2-a). So, this Cauchy 
boundary condition describes the interaction between the surface waters 
and the groundwater in the phreatic aquifer over a certain area. The 
resistance between the surface waters and the top aquifer is called the 
drainage resistance (Ernst, 1962). Ernst (1978) presents applications of 
the drainage resistance and develops expressions to include nested 
systems of surface waters of different dimensions and, therefore, with 
different effects in the interaction between those surface waters and the 
groundwater in the aquifer. The drainage resistance is commonly used in 
the Netherlands, but apart from Ernst (1978) applications have not been 
published in the international literature. 

In the second conceptual model, the (upper) regional aquifer underlying 
the top aquifer is the upper aquifer in the groundwater flow model 
(figure 6.1.2-b). The flow in the top aquifer and through the layer 
separating this aquifer and the regional aquifer is described by the 
Cauchy boundary condition. The representative resistance between the 
surface waters and the regional aquifer is called the feeding resistance 
(Province of Drenthe, 1985). 
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In the context of types of resistance, the words drainage and feeding 
are just part of the names and are not related with the direction of the flow. 
In both conceptual models, the boundary conditions can be dependent on 
the flux to or from the surface waters, such as it may occur due to falling 
dry of a part of the surface waters. 

In the following, only the conceptual model for the feeding resistance will 
be used, except if mentioned otherwise. Apart from this, the analysis in this 
chapter applies only for equidistant and parallel surface waters generating 
similar interactions with the groundwater in the regional aquifer. In chapter 
7, it will be shown, how this Cauchy boundary condition can be used in 
situations with arbitrary situated surface waters. 

In this chapter, a new and simple expression for the Cauchy boundary 
condition is presented in the form of new expressions for the two constants 
in this condition. To provide a solid basis for this new expression, the simpli-
fications used in its derivation are justified and the boundary condition 
describing the flow through the layer separating the top aquifer and the 
regional aquifer is verified. 

The justification of the simplifications used in the derivation is carried out by 
comparison of the results of the new expression with the results of an 
expression derived for a similar conceptual model but without these simpli-
fications (Bruggeman, 1972). 

The verification of the lower boundary condition starts with a comparison of 
the results of the new expression with the results of an expression derived 
for a similar situation except that the condition at the lower boundary is 
changed (constant flux instead of variable flow through the separating layer 
in figure 6.1.2-b). From this comparison, it appears that these expressions 
may lead to strongly different results. So, only one of the boundary 
conditions at the lower boundary should be used. 
In both comparisons mentioned above, it is concluded that only one 
constant in the Cauchy boundary condition (the feeding resistance) is 
needed in a comparison. 

In order to judge which of the conditions at the lower boundary should be 
used, an analytic expression for the feeding resistance is derived for the 
situation with both the top aquifer and the regional aquifer. In general, the 
results of this latter expression agree well with the results of the new and 
simple expression. 

In the search to the right conceptual model for the derivation of the 
expression for the situation with both the top aquifer and the regional 
aquifer, several conceptual models had to be rejected. Because some of 
these conceptual models have been used (by others) to compute the value 
of the drainage resistance numerically, they are summarized and the reason 
of their rejection is described. 
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As an extension of the derivation of the expression for the situation with 
both the top aquifer and the regional aquifer mentioned above, an analytic 
expression for the feeding resistance has been derived for the situation in 
which the surface waters are in direct contact with the regional aquifer, so 
when they cut through the separating layer. This expression is used to 
show that in this case the feeding resistance can often be found by using a 
simple formula in which the new expression for the feeding resistance is 
used. 

The derivations of the expressions for the feeding resistance in this chapter 
are rather complex. Therefore, the derivations are separated from the 
comparisons between different expressions. 

As an exception, all expressions, equations, formulas, etc. in this chapter 
are indicated as (6,s,n), where s is the number of the section and n is the 
number within that section. 

6.2 	A simple expression for the Cauchy boundary condition and step 
one of its verification, comparisons with expressions for flow in 
the top aquifer only 

6.2.1 Derivation of a simple expression for the Cauchy boundary 
condition based on one-dimensional flow in the top aquifer and a 
constant head in the regional aquifer 

The Cauchy boundary condition is used to include the interaction between 
the surface waters and the upper regional aquifer in the actual ground-
water model. This interaction determines the flow from (or to) the surface 
waters to (or from) the regional acuifer via the top aquifer and the 
separating layer (figure 6.2.1-a). In the conceptual model used in the 
derivations, the surface waters are assumed to have equal dimensions and 
to be parallel and equidistant. In section 6.1, Ernst's (1978) solution to deal 
with surface waters of different dimensions has been mentioned and in 
chapter 7 arbitrary situated surface waters are dealt with. The conceptual 
model applies to vertical sections between any two of the parallel and 
equidistant surface waters. 

In the forthcoming derivation of the simple expressions for the constants in 
the Cauchy boundary condition, the differential equation applied is valid in 
the top aquifer between the borders of the surface waters, which 
necessitates the derivation of boundary conditions at these borders. In the 
derivation of the differential equation, the head in the regional aquifer is 
assumed to be constant, which is in:erpreted in the way that the effects of 
the individual surface waters on the groundwater flow in the regional 
aquifer can be neglected in terms of the local head. 

The Dupuit-Forchheimer assumption is used, which results in expressions 
for the constants in the Cauchy boundary condition in which the resistance 
to vertical flow is neglected. In order to account for this resistance, two 
terms are added in the constants in the Cauchy boundary condition, which 
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partly are based on terms derived by other authors (Ernst, 1962; Van Drecht, 
1983). 

The conceptual model 

In the conceptual model of figure 6.2.1-a, the Cauchy boundary condition applies 
to the groundwater flow in the top aquifer and through the separating layer 
between the centre of a surface water and the groundwater divide. The underlying 
regional aquifer is the upper aquifer of the actual groundwater flow model. 

In the following derivation, the Dupuit-Forchheimer assumption is used in 
combination with the assumption that the thickness of the top aquifer is constant. 
Van Drecht (1983) presents a numerical approach to cope with a situation with a 
variable thickness. Bear (1979, pp. 181 - 183) describes several analytic solutions 
for the latter situation, which can not be used here because they lead either to 
solutions which are too complex (elliptic integrals) or apply to situations that are not 
valid here. 

The head in the regional aquifer below the top aquifer is assumed to be 
constant. This assumption is valid if the flux coming from each individual 
surface water is small compared to the flux in the regional aquifer. 

L k00 

IIEII+I±±ItIII1 
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domain of mathematical model 
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(po_I 	
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x= L, 

Figure 6.2.1 
	

Conceptual (a) and mathematical (b) model for the 
Cauchy boundary condition with the feeding resistance. 
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Between x = 0 and x = L12 (figure 6.2.1-b), the following differential 
equation holds. 

+ 	- 	= 0 	0 < x< LI2 	 (6.2.1) 
dx 2 	koH0 	X02 

where: 
c1 	= resistance of the separating layer [T] 
H0  = (representative) thickness of the top aquifer [L] 
ko , x  = hydraulic conductivity of the top aquifer in horizontal direction [LIT] 
L 	= distance between the surface waters [U 
Pn = natural recharge [LIT] 
Xc  = 'c1 k0 ,xH 0) = the characteristic length [L] 

= head in the top aquifer [L] 
= (constant) head in the regional aquifer [L] 

and x = 0 is defined at the border of the surface water (figure 6.2.1). 

Boundary conditions 

The principal boundary conditions are based on assumptions of symmetry 
around the centres of the surface waters (x = -B12) and around the water 
divides between the surface waters (x = L12), leading to: 

dp 
= 0 	at x = - B12 and at x = L12 

dx 
(6.2.2) 

where: 
B 	= width of the surface water [L] 

Because the differential equation (6.2.1) applies to x ~! 0, the flow and the 
boundary conditions for x < 0 are transformed into a boundary condition at 
x = 0 (figure 6.2.2). Because B is generally small (compared to L and X e), it is 
assumed that the flux through the bottom of the surface water si and below 
that place the flux from the top aquifer to the regional aquifer s 2  are constant 
over the small width B and can be determined using the average 
groundwater head in the top aquifer. Assuming a parabolic distribution of the 
groundwater head, the average groundwater head POBaV  will be at x = -B16. 

s 1  = (p - (P0,Bav)kO and S 2 = (PO,Bav - p 1 )1c 1 	 (6.2.3) 

where p is the surface water level [LI, c 0  is the resistance of the bottom 
layer of the surface water [T] and s 1  and S 2  are positive in downward 
direction (figure 6.2.1). The horizontal flow q0(0) [LIT] at x = 0 can be 
approximated using: 

q0(0) = k0 >< {POBav - po(o)} X 61B 	 (6.2.4) 
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where p(0) is the head at x = 0. Continuity of flow over -13/2 < x < 0 
leads to 

(1-2) x B/2 = q 0 (0)H 0 	 (6.2.5) 

Combination of (6.2.3), (6.2.4) and (6.2.5) leads to 

q 0 (0) = (p - p0(0))/c0" + ( pi - 	 (6.2.6) 

where: 
c0  = c0  x(1 + 13) x 2H 0/B 	 (6.2.7) 
c 1 	= c 1  x(1 + I) x 2H 0/B 	 (6.2.8) 

= [(B/2),0 ) 2  + ( B/2X0 1
) 2 ]/3 	 (6.2.9) 

where X ( = )c 0  k00  H 0 ) can be called the minor characteristic 
length [U. The first term in the right hand side of (6.2.6) describes 
the flow from or to the surface water and the second term the flow 
to or from the regional aquifer. In general, 13 vanishes for small 
surface waters. 

z = H 0  

z = 0 

x = 0 

	

Figure 6.2.2 	Mathematical model for the derivation of the boundary 
condition at x = 0. 

Equation (6.2.6) can be rewritten in a boundary condition at x = 0 
(figure 6.2.2). 

P - (Po(0)= q0(0) - - k 	dp0 	
(6.2.10) ____ 	- 

	

c0 * 	 dx 

where: 
p=(pc 1 +(p 1 c0)I(c 1 +c0) and co* =cox (1 +13)x2H0IBxc1 /(c 1 +c,) 

(6.2.11) 
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Derivation of the solution and the feeding resistance 

With the boundary conditions ( 6.2.2) at x = L12 and (6.2.10) at x = 
0, the differential equation (6.2.1) can be solved, leading to: 

TO = 91 + Pc 1  + (p - 	- Pc 1 } x {exp((L-x)1X0) + exp (xIX)}I 
{exp (L/X0) + 1 + (ko co*Ix) (exp (L/X) -1)) 	 (6.2.12) 

With this solution, an expression can be found for the coefficients in the 
Cauchy boundary condition. This condition describes a linear relation 
between the difference between the surface water level and the head in 
the regional aquifer, and the flux from or to the regional aquifer by: 

SLaV = 
(p * 	i )Ic * 	 (6.2.13) 

where c*  is the feeding resistance [T], p is the modified surface water 
level [L] and 5Lav  is the average flux over L through the separating layer 
[LIT]. In fact, (6.2.13) represents the principal definition of both the 
feeding resistance and the modified surface water level. In this definition, 
both the seepage through the separating layer s and the head 'p  in the 
regional aquifer can be either constant or averaged over the distance 
between the surface waters L. In this subsection and in subsection 6.2.2, 
(f is taken constant and in subsection 6.2.3, s is taken constant. The water 
balance between x = 0 and x = L/2 is described by: 

SLav'- = q02H0  + PL 
	

(6.2.14) 

Using (6.2.14), (6.2.10) and (6.2.12) with x = 0 (to calculate q0(0)), the 
following expressions are found for the constants in (6.2.13): 

c* = c0 (1 + 13)L/B + (c 0  + c 1 )LI2X0ctnh(L12X0) 	 (6.2.15) 
p* = p + P(c * c1 - c0 ) 	 (6.2.16) 

These expressions are based on the Dupuit-Forchheimer assumption and, 
therefore, the resistance to vertical flow in the top aquifer is not included in 
the feeding resistance yet. 

Accounting for two-dimensional flow 

In the Dupuit-Forchheimer assumption the resistance to flow in vertical 
direction in the aquifer is neglected, but not the vertical flow itself (Strack, 
1984). The effects of the resistance to vertical flow in the top aquifer can 
be included in the feeding resistance by two additions. 

The first addition concerns the effect on the feeding resistance by the 
contraction of flow lines near the surface water. Ernst (1962, 1978) 
suggests that this effect can be approximated by the radial resistance crad 
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[T], which simply can be added to the feeding resistance described by 
(6.2.15). 

crad = rradL 
	

(6.2.17) 

where r rad is the specific radial resistance [TIL]. Ernst (1962) derived 
expressions for r rad based on flow to a small surface water cutting in an 
aquifer of infinite thickness, which can be seen as a first approximation of 
the effect of the contraction of the flow in reality. With a minor 
simplification and assuming that the hydraulic conductivity for radial flow 
(k r) in an anisotropic medium is the geometric mean of the hydraulic 
conductivities in the principal directions (k 1  = Iko ko ), the expressions for 
rrad as presented by Ernst (1962, pp.  25-26) can be written as: 

rrad = ln(4Ho/7tB)/mak0 	if H 0  > irB/4  
rrad = ln(4) /mak0 	 if H 0  < 	I B/4 	

(6.2.18) 

where a (= k0/k0) is the anisotropy factor [-I and k0  is the hydraulic 
conductivity of the top aquifer in vertical direction [LIT]. 

The second addition accounts for the effect of the vertical hydraulic 
conductivity k0  in the entire top aquifer by taking its reciprocal value as 
the vertical resistance per unit thickness of the aquifer. This resistance is 
assumed to occur over the representative thickness H 0  and is added to the 
resistance of the separating layer, which is called the lumped resistance of 
the separating layer c 1 ' [TI: 

c 1 ' = c 1  + H0/k0 
	 (6.2.19) 

Including these additions the expressions for c*, p and X, become: 

c * = c0(1 + J3)L/B + r radL + (c0  + c 1  ')LI2X0ctnh(L/2? 0) 	(6.2.20) 
p* = p + P( c * c1' - CO) 	 (6.2.21) 
ko  = Ic1'1<01-10 	 (6.2.22) 

If L is very small, c*  becomes almost equal to c0  + c 1 , which expresses the 
situation with vertical flow through the layer at the bottom of the surface 
water which acts in series with the separating layer. In fact, the effect of 
the top aquifer vanishes in this case. 

If L/2? 0 > 3, c*  is approximately linearly related to L, so (6.2.20) reduces 
to c*=  CL, where C = c 0(1 + 13)/B + rrad + (c 0  + c 1  ')/2X0 . Combination of 
this relation with (6.2.13) and (6.2.14) leads to an expression for q 0(0) in 
which L vanishes. 

q0(0) = (p- 1 -P(c 1 '+ c0))/(2H 0C) if L/2? 0  > 3 	 (6.2.23) 

This expression shows that the flux q 0(0) to or from the surface water is 
approximately constant over L for L/2X 0 > 3. This actually means that the 
flux from or to the surface water reaches its maximum at about L = 6 X. 
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Then, the area at the distance larger than this value of L is not affected by 
the surface water any more. 

6.2.2 Summary of Bruggemans (1972) derivation of an expression for 
the Cauchy boundary condition based on two-dimensional flow in 
the top aquifer and a constant head in the regional aquifer 

Bruggemans (1972) expressions for the constants in the Cauchy boundary 
are presented for the analysis of the effects of the simplifications used in 
the derivation of expressions (6.2.20) and (6.2.21), such as the Dupuit-
Forchheimer assumption, the boundary condition at x = 0 (expression 
(6.2.10) ) and the addition of terms for the resistance to vertical flow 
(expressions (6.2.17) and (6.2.19) ). Because the derivation of these 
expressions has not been generally published, it is summarized here. In 
Bruggemans conceptual model, the boundary conditions are different from 
those used in subsection 6.2.1. Therefore, they are presented before the 
actual solution is treated. 

Conceptual model 

Bruggeman (1972) derived expressions for the constants in the Cauchy 
boundary condition in the case of a conceptual model with two-dimensional 
flow in the top aquifer and with the surface water expressed by a condition 
on the top boundary at -B/2 < x < 0 (figure 6.2.1). The differential 
equation is used in the entire domain (-B/2 	x :!~ L/2 , 0 z !~ H0). In this 
differential equation, the natural recharge P is omitted first and is added in 
a second step. 

k0 	+ k0 	= 0 	-B/2 x [/2 	(6.2.24) 
x 2  

Boundary conditions 

The conditions at the vertical boundaries are based on symmetry of the 
flow in the top aquifer (figure 6.2.1). Equation (6.2.2) is rewritten for two-
dimensional flow. 

ax = 0 for 0 z :~ H 0  at x = -B/2 and x = [/2 	(6.2.25) 

Again, the vertical flux s  through the bottom of the surface water is 
assumed to be constant over the width B. Along the rest of the upper 
boundary a zero flux condition is defined. 

J(po 
— 	 Si for -B/2<x0atz= H 0 	 (6.2.26) 

az 	- k0 
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p0 =0 	for0xL/2atz=H0 	 (6.2.27) az 

Afterwards, s 1  is replaced by a Cauchy boundary condition, which includes 
the surface water level and the resistance to the flow from the surface 
water, according to: 

S1 = (p - Po.Bav)"co 	 (6.2.28) 

where VOBav  is the average groundwater head over -B/2 x :!~ 0 at z = H 0 , 
which is analytically determined. Across the lower boundary, the flux 
depends on the difference in the head across the separating layer. 

k0 	(x,0) = 	 for -B/2 x L/2 at z = 0 (6.2.29) 
Jz 	 c 1  

where again 	is the constant head in the regional aquifer. 

Derivation of the solution 

The differential equation is solved by using finite Fourier transformation 
over the independent variable x and applying the boundary conditions. 
The resulting equation for p0(x,z) includes s 1 . After this solution the natural 
recharge P is added along the entire upper boundary (-B/2 x :~ L/2). 
This generates an increase in the head p0(z) constant in x with the value of 

x (c 1  + (H0-z)/k0). To correct for this flow between x = -13/2 and x = 0, 
s is replaced by s - P, leading to the expression: 

	

(s 1 -P)B 	H 0 -z + 	a(L+B)]* p0(x,z)= Ti  + {P~ 	 ]*[c 1 + 

	

L+B 	k0 	m2 k0 

1nuB 	mix 
sin---- cos 	- F(n,z) 	 (6.2.30) 

n=1 n 2 	L+B 	L+B 

where 

(na1 -i- 1)e2 + (na1- 1)efla2 
F(n,z)= 	 (6.2.31) 

(n(x 1 + 1)e na3 
- (na 1 - 1)e -na3 

27tk0  c1 	2ut(H = 	a2 = 	0 -z) 	= 2uH0 	 (6.2.32) 
a(L+B) 	a(L+B) 	a(L+B) 
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Derivation of the feeding resistance 

The feeding resistance is deterrrined using (6.2.13). For this equation, 5LaV 
is derived from the water balance between x = -B/2 and x = L/2: 

SLaV = { PL + s 1 xB}/(L + B) 
	

(6.2.33) 

In this equation s  is found using (6.2.28) in which 'P0Bav  is determined by 
integration of (6.2.30) between x = -1312 and x = 0 at z = H 0 , leading to: 

= (p - K1P - Pi)' K2 	 (6.2.34) 

where: 

= c 1 L/(L + B) - K3 B/k01 	 (6.2.35) 
= c0  + c 1 B/(L + B) + K3B/ko 	 (6.2.36) 

and: 

a(L+B) 2 	1 	nitB 
sin 2 	F 	 (6.2.37) (n 0)  

n 3 	L+B 

The average flux 5Lav  through the separating layer is determined using the 
water balance equation (6.2.33). Finally with (6.2.34) and after reworking 
the result into the form of (6.2.13), this leads to: 

c* = c0L/B + c0  + c 1  + K3(B+L)/ko 
p* = p + P(c*cic0) 

(6.2.38) 
(6.2.39) 

In the derivation of this expression for c*,  no approximations have been 
used and because of that, this solution can particularly be used to 
determine the accuracy of the implementation of the two-dimensional 
effects in the expressions based on one-dimensional flow equations 
(6.2.20) and (6.2.21). The summation in (6.2.37) converges slowly. In 
general, more than thirty terms are needed. In several computations for 
the comparison in subsection 6.2.4, more than 3000 terms were 
needed. Also, the expression (6.2.38) for c*  is difficult to apply in 
mathematical analysis such as will be presented in subsection 7.3.1. 

6.2.3 Derivation of an expression for the Cauchy boundary condition 
based on one-dimensional flow in the top aquifer and a constant 
flux through the separating layer. 

The case of this subsection is presented in order to show the effects of a 
different boundary condition at the separating layer. In this case, the 
flow across the separating layer s changed from variable to constant 
(figure 6.2.1). So, the head in the regional aquifer will not be constant. 
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The derivation of the expressions for the constants in the Cauchy 
boundary condition is similar as it is done in subsection 6.2.1. 

Between x = 0 and x = L12 in figure 6.2.1, the following differential 
equation holds, leading to: 

d 2o0 	S -  Pn 	0 <— x <— L12 	(6.2.40) 
dx 2 	k0H0 

where s is the constant flux through the separating layer [LIT]. For the 
description of the flow in the domain x 0, the boundary condition 
(6.2.10) is used again. In the derivation of this boundary condition, the 
flow s2  between x = -1312 and x = 0 through the separating layer is 
assumed to be constant, which complies with s being constant. At x = L12, 
again boundary condition (6.2.2) has been used. Combination of these 
boundary conditions and (6.2.40) leads to: 

= (s-P)I2H0  x {(x2 - Lx)1k0)( - co*L} + p 	 (6.2.41) 

In the Cauchy boundary condition (6.2.13), a single value for the head in 
the regional aquifer is needed. For this, the average head between x = 0 
and x = LI2 is used. So, (6.2.13) is changed into (see also explanatory text 
with (6.2.13) ): 

5 = (p* 
- (P1,Lav)k 
	

(6.2.42) 

where P1,Lav  is the average head over 0 < x LI2 in the regional aquifer 
[L]. The flux s to the regional aquifer between x = 0 and x = L12 can be 
found using: 

S = (PO,Lav - Pi ,Lav)kl 	 (6.2.43) 

where PO,Lav  is the average of Po  over 0 :!~ x L12. The expression for 
'20,Lav is derived using (6.2.41) and (6.2.11) for c0 * .  

POLav = p + (P - s)x(L2/12k0H0 + co*LI2H 0) 	 (6.2.44) 

Combination of (6.2.42), (6.2.43) and (6.2.44) leads to: 

c* = c0 (1 + 13)LIB + c0  + c1  + (c0  + c 1 ) 1-2/122 02 	(6.2.45) 

p* = p + P(c*ci 
- c0) 	 (6.2.46) 

Similar to what is done in the derivation of (6.220) and (6.2.21), the two 
corrections for the effects of the resistance to vertical flow (6.2.17) and 
(6.2.19) can be included, leading to: 

c* = c0 (1 + 3)LIB + c0  + c1 ' + c rad + (CO + CO 1-2/122 02 	(6.2.47) 
p* = p + P(c*ci 

- CO) 	 (6.2.48) 
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This expression for the feeding resistance appears to be strongly related to 
a solution of Ernst (1962) for the drainage resistance. The differences 
between the conceptual models for the drainage resistance and the feeding 
resistance have been presented in section 6.1 (figure 6.1.2). 

Ernst's (1962) solution for the drainage resistance cdrafl  is based on the 
difference AP0 between the highest groundwater level (at the water divide 
in between the surface waters) and the surface water level. In fact, his 
solution is an addition of resistances to vertical flow, to rotational flow 
(expressed by the radial resistance) and to horizontal flow respectively: 

cdrain = zVp0/P = Ho/ko + c rad + L2 /8koHo 	 (6.2.49) 

Opposite to Van Drecht's (1983) statement, this original Ernst formula 
does not include a term with the entrance resistance c 0 . Using Ernst's 
approach of adding resistances, Van Drecht (1983) changed Ernst's 
expression for the drainage resistance to an expression for the feeding 
resistance simply by the addition of c 0  and c 1 . 

Expressions (6.2.47) and (6.2.49) show that the addition of c 0  and c1  is not 
straightforward. These constants are left out in (6.2.47) in order to arrive 
at an expression comparable to (6.2.49). Then (6.2.47) becomes equal to 
(6.2.49) except for the term with L 2 . This latter term appears with 1/12 in 
(6.2.47) and with 1/8 in (6.2.49). In his derivation, Ernst used the 
maximum head in the top aquifer, whereas for (6.2.47) the average head 
in the top aquifer has been used. It follows directly from the parabolic 
shape of the head in the top aquifer that its maximum is 3/2 times as high 
as its average, which explains the difference. 

From the similarities in the expressions (6.2.47) and (6.2.49) mentioned 
above, it is concluded that a constant flux through the separating layer has 
been implicitly assumed in Van Drecht's adaption of Ernst's expression. 
Also, it is concluded that the terms with c 0  and c 1  in Van Drechts expression 
for the feeding resistance are considerably different from those in (6.2.47). 

6.2.4 Comparison of the simple expression for the Cauchy boundary 
condition with expressions for flow in the top aquifer only 

Context and premises 

In this subsection, the new expressions (6.2.20) and (6.2.21) for the 
constants in the Cauchy boundary condition (6.2.13) are compared with 
Bruggeman's (1972) expressions (6.2.38) and (6.2.39) in order to show the 
effects of the simplifications used in the derivation, such as the one-
dimensional flow and the boundary condition at x = 0. After that, the 
expressions (6.2.20) and (6.2.21) are compared with the expressions 
(6.2.47) and (6.2.48) in order to show the effect of using the different 
boundary condition at the separating layer. 
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The expressions for p ((6.2.21), (6.2.39) and (6.2.48) ) are equal and 
only lead to different results if the values of c are different. Therefore, the 
comparison is restricted to the expressions for the feeding resistance c * 
((6.2.20), (6.2.38) and (6.2.47) ) only. 

The primary variable in the comparison between the different feeding 
resistances is the distance between the surface waters L. In practice, the 
geohydrologic constants c0 , c1 , etc. in the expressions for c*  are roughly 
estimated over relatively large areas compared to the rather accurate 
determination of the distance between the surface waters. Also, it is 
important to know how the feeding resistance will change due to a change 
in the surface water network which also is expressed in terms of L. It can 
be concluded from (6.2.20) and (6.2.47) that c*  is partly but not 
completely related to L/X0. Also, the relation between c*  and L/X0  does 
not appear clearly from (6.2.38) or from the expressions for c*  that will be 
derived in section 6.3. Therefore, the distance parameter is not made 
dimensionless. 

The results of the comparisons are presented in the figures 6.2.3 and 6.2.4. 
The x-axes in these figures represent the distance between the parallel 
surface waters. The y-axes in these figures express the ratio between the 
two feeding resistances in each comparison. 

Table 6.2.1 Parameter values applied in the comparisons 

parameter low value standard value high value 

CO 	d .01 1 100 
c 1 	d .1 10 1000 

ko 	mId .1 1 10 
koHo 	m2 /d .1 x .5 1 x 5 lOx 50 
B 	m .1 2 10 

In the diagrams in figures 6.2.3 and 6.2.4, the ratio between each two 
feeding resistances is presented for three different values of all 
geohydrologic constants, which are given in table 6.2.1. The standard 
values of the geohydrologic constants are chosen such that all terms in 
expression (6.2.20) are effective; there is not a single term dominating the 
other terms in the expression of feeding resistance. The other two values 
of the geohydrologic constants are taken considerably larger and smaller 
than the standard values. 

The effect of the simplifications in the derivation of the new expression for 
the feeding resistance shown by comparison with Bruggeman s expression 

Figure 6.2.3 shows the ratio between the feeding resistances of (6.2.38) 
and (6.2.20), which is chosen in order to show the larger differences 
between both feeding resistances as a ratio smaller than 1. This ratio is in 
the range of 0.9 to 1.1 in most of the diagrams for any distance between 
the surface waters L. This means that the values of the feeding resistances 
in the two approaches are almost equal. All graphs start close to 1 and 

154 



become constant for large values of L. From the equality of both 
expressions, it is concluded (see remarks with expression (6.2.21)) that also 
Bruggemans expression becomes linear with L for large values of L. 

The largest differences between both expressions appear for low values of 
k0 (figure 6.2.3-d) and large values of k05 H 0  (figure 6.2.3-b), which 
originates from the terms c 1  and rrad  in (6.2.20) that account for the two-
dimensional effects. The larger the thickness of the aquifer or the smaller 
the vertical hydraulic concluctivity becomes the more the effects of the 
approximations for the resistance to vertical flow in (6.2.20) will show up. 

08 

07 

05 

	

distance between surface waters m 
	

distance between surface waters m a 	en 00=100 	• r=l 	en c0=.Ot 
	 b 	en k 0  tO H 0=50 S k u  t H0  =5 0 ka x t H0  5 

en '/d 

	

distance between surface waters m 	 distance between surface waters or 
C 
	

en c=1000 • c 1 =10 0 c 1= . 1 	d 	 d 	en f< 05 =10 	• k05 -1 	0 k=t re/d 

distance between surface waters m 

e 	
en B=10 	• 0-2 	en 0=A 

Figure 6.2.3 	Ratios between the feeding resistances (6.2.38) and 
(6.2.20). 
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The differences showing up for large values of B (figure 6.2.3-e) originate 
from the assumptions used in the derivation of the boundary condition at 
x = 0 (e.g. s2  being constant over width B). 

It is concluded that the simplifications in the derivation of the simple 
expression for the feeding resistance are justified by the results of this 
comparison. 

The effect of a different boundary condition in the new expression for the 
feeding resistance shown by comparison with the expression for the case 
with constant flux across the separating layer 

In figure 6.2.4, the ratio between the expressions (6.2.20) and (6.2.47) is 
presented, which is chosen in order to show the larger differences between 
both feeding resistances as a ratio smaller than 1. 

In all diagrams of figure 6.2.4, the results of (6.2.20) and (6.2.47) appear 
to be comparable for L 6 2. The parameter values given in table 6.2.1 
lead to the following values for X 0 : X0  = 8.7 m for standard values, 

= 87 m for high k0H0,  XO  = 0.8 m for low k0H0  2 = 71 m for high 
c 1 , ko  = 5 m for low c 1 , A O  = 7.2 m for high k0  and ?= 17 m for low k0 

From analysis of the expressions (6.2.20) and (6.2.47), it becomes clear 
why the results of these expressions will be different for L ~! 6 2. When L 
becomes larger than 6 ko  then (6.2.20) is linear in L while the last term of 
(6.2.47) is quadratic in L. All differences between these feeding resistances 
due to other parameter variations are minor compared to this difference. 

It is concluded from figure 6.2.4 and the above analysis that a different 
condition at the lower boundary leads to significantly different results of 
the feeding resistance. 

In reality, the distribution of the flux through the separating layer will be 
neither equal to the distribution generated by the constant head nor equal 
to the distribution generated by the constant flux. The real distribution 
depends on the characteristics of both the top aquifer and the regional 
aquifer and of the separating layer. Therefore, an expression for the 
feeding resistance based on a two-aquifer schematization is presented in 
the next section. The results of that expression (6.3.29) will be compared 
with the results of the simple expression for the feeding resistance. By that 
comparison it will be shown, that the boundary condition used in the 
derivation of this simple expression based is to be preferred above the 
expression based on a constant flux to the regional aquifer. 
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Figure 6.2.4 	Ratios between the feeding resistances (6.2.20) and 
(6.2.47). 

6.3 	Analysis of expressions for flow in both the top aquifer and the 
regional aquifer and step 2 of the verification of the simple 
expression for the Cauchy boundary condition 

6.3.1 On the suitability of conceptual models describing flow in two 
aquifers for the derivation of the feeding resistance 

In section 6.2, it has been concluded that in reality neither the flux through 
the separating layer between the top aquifer and the regional aquifer is 
constant nor the head in the regional aquifer is constant and, therefore, 
neither of the expressions for the feeding resistance derived in that section are 
perfect. In order to verify the boundary condition used in the new expression 
for the feeding resistance (derived in subsection 6.2.1), this expression is 
compared with an expression for the feeding resistance based on a conceptual 
model including flow in both the top aquifer and the regional aquifer. 
To be suitable for the derivation of the feeding resistance, a conceptual 
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model should describe the principle of a Cauchy boundary condition in a 
groundwater model, which is (see section 6.1) the interaction between the 
surface waters in the top aquifer and the groundwater in the upper 
regional aquifer of the model. In the practice of computing the effects of 
different scenarios, the Cauchy boundary condition is meant to account for 
the changes in the flux to or from the regional aquifer due to changes in 
the flow conditions, e.g. a different surface water level or a different 
abstraction by a well in the regional aquifer. 

In the conceptual models with two aquifers described in this section, the 
upper aquifer represents the top aquifer in which the surface waters act 
(figure 6.2.1-a) and the lower aquifer represents the upper regional aquifer 
which is the actual upper aquifer of the groundwater model. In a suitable 
conceptual model, there should be an exchange of groundwater between 
the surface waters and the regional aquifer or - which is the same - 
between both aquifers. 

Several analytic solutions for axial-symmetric cases with wells in multi-
aquifer profiles have been presented by various authors (e.g. Huisman, 
1972, Maas 1986). The general solution of the differential equation 
describing (semi-) two-dimensional flow in two aquifers is a classical 
solution (e.g. Huisman, 1972), but particular solutions of this differential 
equation, as they are needed here, are rare (see later in this subsection). 

During the search for a suitable conceptual model, several conceptual 
models with two aquifers had to be rejected. These models are discussed 
here in order to prevent using them in the computation of the feeding 
resistance. 

In these models, the boundary conditions in both the top aquifer and the 
regional aquifer are based on assumptions of symmetry. As will be shown 
next, these models describe particular cases of groundwater flow which are 
not suitable for the derivation of the feeding resistance. The rejected 
conceptual models are presented together with their practical meaning and 
the reason why they are not suitable for the derivation of the feeding 
resistance. The discussion is without a presentation of the solutions in 
terms of the feeding resistance (which can be obtained from the author). 

The enumeration starts with one of the few existing solutions for a two-
aquifer system with semi-two-dimensional flow derived by Ernst (1983). 
After that, the other rejected conceptual models are described. 

The Ernst (1983) case 

Ernst (1983, pp. 8-10) presents a solution for a case of groundwater flow in a 
system of two aquifers separated by a separating layer (figure 6.3.1-a). Ernst 
defines a constant inflow at the upper boundary (e.g. natural recharge) and 
zero flow across the base. In the top aquifer, the boundary conditions at the 
vertical sides are based on symmetry similar to that in the cases of section 
6.2. In the regional aquifer, Ernst assumed that there is no horizontal flow 
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under the surface waters. Ernst did not explicitly describe the outlet of the flow 
system. In his solution, an integration constant remains, which should have 
been worked out as a condition that describes the flow to the surface waters. 

flax = constant 	flax constant 	
symmetry axes

=  

no flow boundary 

-71 

a 

fl[Z7 / 

A 	 V 	 A 

b 

Figure 6.3.1 	Conceptual mode; (a) of Ernst (1983) and the authors 
interpretation of the schematized flow situation (b). 

In the regional aquifer, the no flow boundary conditions determine the 
outermost streamline of the flow system connected with the top aquifer 
(figure 6.3.1-b). All the groundwater flowing down through the separating 
layer flows up again at another place inside the outermost streamline. The 
combination of this flow system anc another flow system in the regional 
aquifer (as Ernst suggests) does not change the fact that the water in the 
flow system remains inside that outermost streamline. In other words, 
there is no net flow from the surface waters to the regional aquifer. 

As mentioned in subsection 6.3.1, the Cauchy boundary condition should 
describe the exchange of groundwater between the surface waters and the 
regional aquifer (being the top aquifer of the actual groundwater model). 
The present conceptual model does not describe this exchange, so it can 
not be used for the derivation of the feeding resistance. 
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Other symmetric cases 

In figure 6.3.2, two conceptual models with symmetric flow in both of the 
two aquifers are presented. The boundary conditions in the top aquifer 
represent the surface waters and the axis of symmetry similar to the case of 
figure 6.2.1. For the sake of simplicity the natural recharge is omitted, 
because it does not affect the feeding resistance (see (6.2.20), (6.2.38) and 
(6.2.47)). In the regional aquifer, the boundary conditions are an imper-
meable base, a no flow boundary and a constant head boundary. 

symmetry 
axis 

Figure 6.3.2 	Conceptual models with two aquifers and boundaiy con- 
ditions describing symmetric flow; prescribed head condi -
tion in the lower aquifer (a) below the surface waters and 
(b) below the middle between the surface waters. 

Both models in figure 6.3.2 are based on symmetry along the vertical 
boundaries. Next to each model, a model with boundary conditions mirror-
wise can be placed and this can be repeated over and over. Then, it is easy 
to see that the constant head boundary simulates an internal vertical 
boundary in the regional aquifer, simulating an infinitely-long head-
specified line-sink (or line-source) in the direction perpendicular to the 
section. The groundwater in such line-sinks is generated by man-made 
conditions and will flow to or from the surface of the system. The constant 
head boundary does not simulate the interaction between the surface 
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water and the regional aquifer, because in reality this interaction does not 
occur by way of line-sinks. Therefore, both conceptual models are not 
suitable for the derivation of the feeding resistance. Actually, the ground-
water system is again bounded by flow lines similar to those in figure 6.3.1. 

6.3.2 The general, mathematical solution for a conceptual 
model with two aquifers 

The derivation of the expression for the feeding resistance based on the 
case with two aquifers starts from the classical differential equation 
describing the flow in a two aquifer system. Next, the derivation of the 
general solution (so without implementation of boundary conditions) of 
this differential equation is presented which also can be found in the 
literature (Huisman, 1972, pp.37-38). 

(p 0  

Figure 6.3.3 	Conceptual model for flow in two infinite aquifers 

As mentioned in subsection 6.3.1, the natural recharge can be omitted in 
the derivation, because it does not affect the feeding resistance. In the rest 
of section 6.3, the effects of the resistance to vertical flow are not taken 
into account, because all cases are based on the Dupuit-Forchheimer 
assumption. Then the flow in the top aquifer can be described by 

dl(po - 	= 0 	 (6.3.1) 
dx2 	X 2  

where X0 , 	c have been explained in section 6.2. The flow.in the 
regional aquifer is described by: 

- PiPo = 0 	 (6.3.2) 
dx2 	2 i  

where: 
= k 10 H 1 c 1 	 (6.3.3) 

and 
H 1  = thickness of the regional aquifer [L] 
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k1 	= hydraulic conductivity in horizontal direction in the regional aquifer [LIT] 
= characteristic length in the regional aquifer [L] 

Subtraction of (6.3.1) from (6.3.2) leads to: 

d 2  (PiPo) - P1PO = 0 	 (6.3.4) 
dx2 	X012 

where 

- X0 )2 
- 	 (6.3.5) 

X02  + A. 1 2  

and A.01  is the combined characteristic length [L]. The general solution of 
(6.3.4) is: 

-x1X01 	xIA.01  
- 	

= C 1 e 	+ C2 e 	 (6.3.6) 

Combination of (6.3.6) and (6.3.1) and integrating twice gives the general 
solution for 

	

-x1X01 	x1X01  
TO = 	(C 1 e 	+ C2 e 	) + Cx + C4 	 (6.3.7) 

The general solution for o l  is found by subtracting (6.3.6) from (6.3.7). 

	

-x1X01 	x1X01  
= 	(C 1 e 	~ C2 e 	) + C3 x + C4 	 (6.3.8) 

Equations (6.3.7) and (6.3.8) are the general solution of the differential 
equation describing flow in two aquifers. The integration constants depend 
on the conditions at the vertical boundaries in both aquifers. The differ-
ences between the cases described in subsections 6.3.3 and 6.3.4 apply to 
differences in these boundary conditions. 

6.3.3 Derivation of an expression for the feeding resistance based on a 
conceptual model including both the top aquifer and the regional 
aquifer 

The expression for the feeding resistance is based on a conceptual model 
that includes both the top aquifer and the regional aquifer. This conceptual 
model should comply with the basic principle of the Cauchy boundary con-
dition, which is the exchange of groundwater between the surface waters 
and the regional aquifer being the top aquifer of the actual groundwater 
model. The boundary conditions following from the conceptual model are 
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derived in a way that is more or less similar to that in subsection 6.2.1. 
After solving for the integration constants, the expression for the feeding 
resistance is found. 

Conceptual model 

Consider a top aquifer and a regional aquifer connected by way of a 
separating layer (figure 6.3.4). As argued in subsection 6.3.1, the natural 
recharge is omitted in this conceptual model. In the model presented in 
figure 6.3.4, the groundwater flows from the surface waters to the deeper 
groundwater system, or in the opposite direction. The surface waters are 
connected with the top aquifer via a layer generating the entrance 
resistance (compare with figure 6.2.1). The thickness of the top aquifer is 
assumed to be constant (as in subsection 6.2.1). 

H, 

Figure 6.3.4 	Conceptual model with two aquifers for the derivation of 
the feeding resistance 

In the regional aquifer in figure 6.3.4, one particular flow line separates the 
groundwater coming from the srface waters via the top aquifer and the 
groundwater entering the section via the left boundary in the regional 
aquifer. This separating flow line starts in the centre of the surface water at 
the upstream side (left side in figure 6.3.4). Between the surface waters, 
the part of the regional aquifer above this flow line is considered in the 
derivation of the solution for the feeding resistance. In the derivation, the 
thickness of the part of the regional aquifer above this flow line Hia  is 
assumed to be constant. At the -ight boundary, the head in the regional 
aquifer is specified (taken as the reference level). Similar conceptual models 
can be placed adjacent to this model. In this conceptual model, there is a 
real interaction between the surface waters and the groundwater in the 
regional aquifer. 

From continuity of flow it follows that the ratio between Hia  and the 
thickness of the entire regional aquifer H 1  equals the ratio of the flux 
above the separating flow line aid the flux through the entire aquifer. So, 
the value of Hia  in the following formulas for the feeding resistance is not 
only determined by geohydrologic constants, but also by the flow situation 
in the regional aquifer outside the area considered. In the comparison with 
the one-aquifer solutions for the feeding resistance, the value of Hia  has 
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p 	 p 
reference 
level 

n=O 	 x=L 

a 	 b 

been varied over a wide range, in order to assure that practically all 
possible realistic flow situations are taken into account. 

Derivation of the boundary conditions 

The heavy flow line in figure 6.3.5-a separates the flow as discussed in the 
former section. The groundwater flow above this line can be schematized 
as presented in figure 6.3.5-b. 

Figure 6.3.5 	Detailed conceptual model with two aquifers (a) and its 
mathematical schematization (b) for the derivation of the 
feeding resistance 

In the top aquifer, the boundary conditions at x = 0 and x = L describe the 
interactions with the surface waters similar to those in figure 6.2.2, leading 
to expressions similar to (6.2.10): 

= -k 	
d0 	

at x = 0 	 (6.3.9) 
c0 	dx 

atx=L 	 (6.3.10) 
dx 

In the regional aquifer, the heavy flow line generates a no flow boundary 
on the left hand side and acts as the impermeable base of the flow system. 
On the right hand side, the head in the regional aquifer is specified equal 
to the reference level, because the analysis is focused on the feeding 
resistance. 

=0 	 atx=0 	 (6.3.11) 
dx 

= 0 	 at x = L 	 (6.3.12) 
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Using these four boundary conditions, the integration constants in (6.3.7) 
and (6.3.8) can be solved. 

Solution of integration constants. 

The integration constants are solved in three steps. In the first step the 
boundary conditions are combined with the general solution of the dif-
ferential equation. Combination of (6.3.11) and the derivative of (6.3.8) 
with x = 0 leads to: 

C3  = (C2 -C 1 )X01 /2 1 2 	 (6.3.13) 

Combination of (6.3.12) and (6.3.8) with x = L leads to: 

C4  = (C 1 /a + C2c)A.012/2.12 - C 3 L 	 (6.3.14) 

where: 

L/X01 	
(6.3.15) 

Combination of (6.3.9) and (6.3.7) and its derivative with x = 0 leads to: 

C4  = p' - (C2  + C 1 )X01 2/X02  + (C2 - C i )koxco */Xoi 	(6.3.16) 

Combination of (6.3.10) and (6.3.7) and its derivative with x = L leads to: 

C3  = (p - (C 1 /c + C2a)]/koco + (C1/a - C 2 a)2 Q1 /2L02 	(6.3.17) 

In the second step, these four equations can be reduced to two equations 
with two unknowns in one step by choosing a particular combination of 
equations. The first equation is found by combination of (6.3.13) and 
(6.3.17) and the second equation is a combination of (6.3.13) and 
(6.3.16). 

C2y1  = p + 
C273 = p + C 1 74  

where: 
Yi =133132+a+133131; 
73 = 132 + 132 1L/2 o1  +P, -  133; 

= ki xHi a/(ko x Ho + ki x Hi a); 
133 = koxco */2 oi  

(6.3.18) 
(6.3.19) 

72 = 133132 - 1/cx + NPDX 
74 = 132" - 132 L/X01 - 13 i - ft 
132 = koHo/(koHo + ki x Hi a) 

Because the thickness of the considered part of the regional aquifer is Hi a  
(figures 6.3.4 and 6.3.5), H 1  in (6.3.3) has been replaced by Hi a . In the 
third step, the combination of equation (6.3.18) and (6.3.19) leads to the 
integration constants C 1  and C2 . 

C1 = p' i 
	 (6.3.20) 

C2 = P 2 
	 (6.3.2 1) 
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where: 
= ( - 	- 7372); 	 E 2 = (y - 	'(71 - 7372) 

The integration constants C 3  and C4  can be solved using (6.3.13) and 
(6.3.14) respectively. 

C3 = P(2 - €1)X01/212 	 (6.3.22) 
C4 = p{(c 1 /a+ €2c)X01 - (2- € 1 )L}X01 12. 1 2 	 (6.3.23) 

Derivation of the feeding resistance. 

In section 6.2, the feeding resistance (expression (6.2.13)) is defined by 
using either the average value of the flux through the separating layer and 
the constant head in the regional aquifer or the constant flux through the 
separating layer and the average value of the head in the regional aquifer. 
In the present case, both this flux and head vary and their average values 
are to be used, leading to: 

= (p - P1.Lav)"Lav 	 (6.3.25) 

where 01,Lav  is the average over L of the head in the regional aquifer [LI, 
which is derived by integration of (6.3.8) over 0 < x < L. 

P1,Lav = 0-73 
	 (6.3.26) 

where E3 = 2 [(c 1 /a + E2)(1 - a)X/L + (€ - c 2 )L/2? 01  + 	+ c2cd. 

The average flow through the separating layer 5Lav  is found from the water 
balance in the regional aquifer. 

5La)- = kixHia 
dp1 	

at x = L 	 (6.3.27) 
dx 

leading to: 

5Lav = DE4 ki x Hi a/X01L 	 (6.3.28) 

where €4 = ( E1/a + E2)(a - 1)J32. 

Combination of (6.3.25), (6.3.26) and (6.3.28) and using (6.2.11) leads to 
the expression for the feeding resistance: 

c* = X01  L/k 1 x Hi a  (Cl + c0)/c0  0 - € 3 )1E 4 	 (6.3.29) 

which again is a function of geohydrologic constants only. In subsection 
6.3.4, this expression will be compared with the expressions derived in 
section 6.2. 
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6.3.4 Comparison of the expression for the feeding resistance based on 
flow in both the top aquifer and the regional aquifer with the 
simple expression presented in section 6.2. 

Context and premises 

The feeding resistance derived in subsection 6.3.3 is compared with the 
simple expression for the feeding resistance derived in subsection 6.2.1. 
The comparison concerns the differences and similarities between ex-
pression (6.3.29) and expression (6.2.15). Expression (6.2.15) is used 
instead of expression (6.2.23), because the effects of the resistance to 
vertical flow have been left out in the conceptual model of section 6.3.3 
(figure 6.3.5). Beforehand, it is concluded from subsection 6.2.4 that, if 
expression (6.3.29) and expression (6.2.15) compare well, the condition at 
the lower boundary (constant head in the regional aquifer) used in the 
derivation of expression (6.2.15) is to be preferred above the boundary 
condition (constant flux to the regional aquifer) used in the derivation of 
expression (6.2.47). 

In the comparisons of the feeding resistances, the same variations of 
parameter values are used as in subsection 6.2.4 for B, c0 , c 1  and k0H0. 
Because the resistance to vertical flow is not taken into account k07  is 
omitted in the comparison and (6.2.15) is used instead of (6.2.20). The 
transmissivity of the regional aquifer k 1 H 1  is added to the set of para-
meters (table 6.3.1). The values of k1H 1  are taken rather small because, in 
general, only a small part of the thickness of the regional aquifer is occu-
pied by the outflow from the individual surface waters (see figure 6.3.4). In 
order to assure that practically all possible realistic situations are taken into 
account, a wide range of values is taken. 

Table 6.3.1 Parameter values applied in the comparison 

parameter low value standard value high value 

CO 	d .01 1 100 
C l 	d .1 10 1000 

koHo 	m2 Id .1 x .5 1 x 5 lOx 50 
k 1 	Hi 	m 2 /d ,a .2 x .5 20 x .5 20 x 50 
B 	m .1 2 10 

The result of the comparison is presented in the diagrams in figure 6.3.6, 
where the y-axes express the ratio between two feeding resistances and x-
axes represent the distance between the (parallel) surface waters. This ratio 
is chosen in such a way that the large differences between both feeding 
resistances appear as a ratio smaller than 1. 

Comparison 

All diagrams in figure 6.3.6 show, that for small and for large values of the 
distance between the surface waters L, the ratios between the feeding 
resistances are almost constant with L. Apparently, the relationship be- 
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tween the cases is consistent. The ratio remains within 0.85 and 1 .0, 
except for extremely low values of the transmissivity of the regional aquifer 
(figure 6.3.6-d). In that situation the two-aquifer schematization is no 
longer valid (see later). So, the feeding resistances in the comparison can 
be considered to be about equal taking into account that their values vary 
from less than I to more than 106  days. 

Looking more in detail at figure 6.3.6, the following remarks can be made 

The condition of the constant head in the one-aquifer case of subsection 
6.2.1 corresponds to an infinitely large transmissivity of the regional 
aquifer. As shown in figure 6.3.6, the feeding resistance (6.2.15) is equal to 
(6.3.29) if the transmissivity of the regional aquifer is large compared to 
the transmissivity of the top aquifer (figure 6.3.6-d). In that case, the 
regional aquifer acts like an aquifer with an infinitely large transmissivity. 
The same applies to the situation in which the transmissivity of the top 
aquifer is small compared to the transmissivity of the regional aquifer 
(figure 6.3.6-b). The opposite situation, where the transmissivity of the top 
aquifer is much larger than that of the regional aquifer, is comparable to 
that with the absence of the regional aquifer. The two-aquifer model is 
reduced to a one-aquifer model and becomes, in fact, not valid. Therefore, 
the line expressing the low hydraulic conductivity in the regional aquifer in 
figure 6.3.6-d should be disregarded in the comparison. 

In situations where the entrance resistance (figure 6.3.6-a) is large, the 
local effect on the head in the regional aquifer is small, because the fluxes 
to or from the surface water are small. The constant head in the regional 
aquifer used in the one-aquifer case is nearly correct then and both cases 
are almost equal. A small entrance resistance causes a large flux and 
generates a relevant effect on the head in the regional aquifer and causes 
the difference between the compared feeding resistances shown in figure 
6.3.6-a. 

An increase in the width of the surface water (figure 6.3.6-e) shows similar 
behaviour as a decrease in the entrance resistance and vice versa, which 
also can be deduced from (6.3.32). So, the larger the width the greater 
the differences in the feeding resistances will be. 

In situations where the resistance of the separating layer is small (figure 
6.3.6-0, the effects of the flux from or to the surface water will be very 
local, as the characteristic lengths in both aquifers are small. The flux 
through the separating layer will be affected by the surface water only 
over a small distance. Therefore, the ratio between the feeding resistances 
for large values of L (compared to the characteristic length) will be about 
constant. The higher the resistance of the separating layer, the larger the 
characteristic length will be and the larger the length will be over which the 
flow is different in both cases. Then, the feeding resistances for large L will 
differ more and more. The shift of the sloping part in the curves of figure 
6.3.6-c indicates this relationship via the characteristic length. However, the 
ratios remain constant with L for large L. 
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It is concluded that the results of both expressions for the feeding 
resistance in the comparison are very similar, except in situations of minor 
importance. By this conclusion, the verification of the simple expression for 
the feeding resistance presented in subsection 6.2.1 is completed. 

distance between surface waters m 	 distance between surface watn 

distance between surface waters m 	 distance between surface waters m 

flc,=rccc •c=rO Ocrrd 	 d 	aka=sco 0 kU.=5 	OkH=cS rib 

02 

distance between surface waters m 

Figure 6.3.6 	Ratios between the feeding resistances of (6.3.29) and 
(6.2.15). 

6.4 	An expression for the feeding resistance based on a conceptual 
model with surface waters connected to both the top aquifer and 
the regional aquifer and its comparison with a more practical 
expression 

6.4.1 Derivation of an expression for the feeding resistance based on a 
conceptual model with surface waters connected to both the top 
aquifer and the regional aquifer 

Sometimes, the surface waters cut through the top aquifer and even 
through the separating layer. In such situations, they are in direct contact 
with the regional aquifer. Once the expression for the feeding resistance 
for the conceptual model of subsection 6.3.3 was found, it was a small 
step to find boundary conditions for another two-aquifer conceptual 
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model. The expression for the feeding resistance is derived similar to the 
way it was done in subsection 6.3.3. 

Boundary conditions 

Figure 6.4.1 shows the conceptual model with the surface waters con-
nected to both aquifers and its mathematical schematization. The direct 
contact between the surface waters and the regional aquifer is generated 
by the boundary conditions for the regional aquifer at x = 0 and x = L. 
Also, the boundary conditions of the top aquifer are different from that 
in the previous subsection, because the Cauchy boundary conditions in 
the top aquifer express the connection of the surface water with that 
aquifer over its entire thickness. In these boundary conditions, the 
entrance resistances c 0  are used as they reflect the actual boundary of 
the surface water. 

x..O 

a 	 b 

Figure 6.4.1 	Detailed conceptual model (a) with surface waters 
connected to two aquifers and the schematization (b) for 
the derivation of the feeding resistance. 

So, the boundary conditions in the top aquifer are: 

dç0  
- k0 	 at x = 0 	 (6.4.1) 

CO 	dx 

=k0 	 atx=L 	 (6.4.2) 
CO 	

dç0 

dx 

Similar to the way it was done in the case of subsection 6.3.3 (figure 6.3.5), 
the boundary condition on the left side in the regional aquifer is based on the 
separating flow line sketched in figure 6.4.1-a. The flow to the regional aquifer 
through the bottom of the surface water occurs over a width B/2. This flow is 
included in the schematization on the left side of figure 6.4.1-b, where it 
occurs over the entire aquifer thickness H1..  The head in the regional aquifer is 
assumed to be constant over the small width B. Then, it follows that: 

(p - p 1 )B/2c0  = ( p - (p 1 )H 1 a/co 	at x = 0 
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and hence: 

c0° = 2Hi aco/B 
	

(6.4.3) 

reference 
level 

B x=L 	x=L+ 

Figure 6.4.2 	Scheme for the derivation of the boundary condition at x=L. 

So, the boundary condition on the left side is expressed by: 

k 	 atx=O 	 (6.4.4) 
CO 	dx 

The derivation of the boundary condition on the right hand side in the 
regional aquifer is based on a difference approach around the section A-A' 
at x = L + B14 in figure 6.4.2. Both the flow from the surface water into 
the regional aquifer and the specified head are included in this boundary 
condition. 
The flux through the vertical section A-A is determined by the water 
balance in the shaded domain left of section A-A' in figure 6.4.2. 

q 1 (A)H 1,  = q 1 (L)H 1  + SB,v 	 (6.4.5) 

where: 
q 1 (A) = flux per unit thickness through vertical section over point A [LIT] 
q 1 (L) = flux per unit thickness through vertical section at L [LIT] 
5Bav 	= average flux through bottom of surface water over width B/4 in 

the shaded domain in figure 6.4.2 [LIT] 

Assuming that the head Pi  is linear between x = L and x = L + B12 (figure 
6.4.2), the head in the centre of the shaded domain in figure 6.4.2 at 
x = L + B18 becomes ((1(L) - 0)*314, where p 1 (L) is the head [L] at x = L 
and the reference level at x = L + B12 equals 0 as mentioned before. The 
vertical flow from the surface water into the shaded domain in figure 6.4.2 is: 

5Bav = [ p - ((p1(L) - 0)314 ] I c0 	 (6.4.6) 
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Darcys equation in terms of differences over section A-A in figure 6.4.2 is 
expressed by: 

q 1 (A) = k1(p1(L) -0) / (13/2) 	 (6.4.7) 

Combination of equations (6.4.5), (6.4.6) and (6.4.7) and using (6.3.12) 
leads to a Cauchy boundary condition. 

q 1 (L) = ( p 1 (L) - p3)/c 1 ° 	 (6.4.8) 

where: 
Cl 0  = (16coHi aB)/(32ki xHi aco + 313 2 ) 
13p = (4B2)/(32ki xHi aco + 313 2 ) 

So, at the right hand side in the regional aquifer, the following Cauchy 
condition is valid: 

pf30 -ç1 (L) 	dp 1  
= k1 	 (6.4.9) 

c 1 ° 	dx 

Solution of integration constants 

In four steps, the four boundary conditions (6.4.1), (6.4.2), (6.4.4) and 
(6.4.9) are used to solve the four integration constants in the general 
solution of the differential equations (6.3.7) and (6.3.8). In the first step, 
the boundary conditions are combined with these differential equations. 

Combination of (6.3.7) and its derivative with (6.4.1) and x = 0 lead to: 

(C 1  +C2)X01  2/X 2+C4 p = [(C2 -C 1  )? 2/X 2  + X01  C3]k0 c0/X01 	(6.4.10) 

Combination of (6.3.8) and its derivative with (6.4.4) and x = 0 lead to: 

-(C 1 +C2)41 2/X 1 2  +C4-p = 1(C 1 -C2)41 2/42  + 4 i C3]k i co0/X i 	(6.4.11) 

Combination of (6.3.7) and its derivative with (6.4.2 and using (6.3.15) 
and x = L lead to: 

-(C 1  /cx+(XC2 )X01  2/42  -C3 L-C4+p = [(C2c-C 1  /()X 2IX J2  + 41  C3 ] ko co/X01  
(6.4.12) 

Combination of (6.3.8) and its derivative with (6.4.9) and using (6.3.15) 
and x = L leads to: 

-(C 1 /a+(C2)),01 2 /? 1 2  +C3 L+C4  -p13 = 1(C2a-C1 /cx)X01 2 /? 1 2  - X01 C3 1 k i ci 0  
(6.4.13) 

The second step is the elimination of C 4 , leading to three equations with 
C 1 ,C2  and C 3 . The first equation is derived by combination of (6.4.10) and 
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(6.4.11), the second by combination of (6.4.12) and (6.4.13) and the third 
by combination of (6.4.10) and (6.4.12). 

C 1 75  + C276  = 41C3Y7 	 (6.4.14) 
C 1 /a78  + C 2 cc79  + p(1-13) = 2 01 C3710 	 (6.4.15) 
C 1 (711 -712 /a) + C2 (712 -(c711 ) = ?.01 C 3713 	 (6.4.16) 

where: 

134 	= kico1/A.o 1  
136 	= koco/2.01  
15 	= 1 +131136+132134 
17 	= 131134 
79 	= -1 	+ 131136  + 132135 
lii 	= 1310 + 136) 
113 	= L/X01  + 2 136 

135 = k1c 1 °/2.01  

16 =1- 131136 - 132134 
18 = -1 - 131136 - 131135 
ho = 136 - 15 
112 = 130 - 136) 

In the third step, C 3  is eliminated resulting in two equations with C 1  and 
C2 . The first equation is derived by combination of (6.4.14) and (6.4.15) 
and the second by combination of (6.4.14) and (6.4.16). 

c11  + c22 = 
c13  + C482 = 0 

where: 

6 1 = hslio - 7778/a 
63 = lii - 712/a - 15113'17 
55 =  

(6.4.17) 
(6.4.18) 

62 = 1110 - 7779cL 
84 = hi - hii - 16113'17 

In the fourth step, the integration constants C 1  and C 2  are solved by the 
combination of (6.4.17) and (6.4.18). After that, C 3  is derived by using 
(6.4.14) and C4  is found by using (6.4.10). 

Cl = p E 
= € 6 

C3  = P6 7/ kOl 
C4  = p(€ 8 + 1) 

where: 

= 5423 - 41) 
€7 = (75€5+16€6)/17 

Determination of the feeding resistance. 

(6.4.19) 
(6.4.20) 
(6.4.2 1) 
(6.4.22) 

= 5323 - 41) 
€8 = 133€7 111(5 - 11266 

The feeding resistance is derived in a similar way as in the previous case, so 
using (6.3.25). The equation for P1,Lav  is derived by integration of (6.3.8) 
over L and dividing by L, and using (6.4.19) to (6.4.22). This leads to: 

P1,Lav(1 +€9)p 
	

(6.4.23) 
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where 
€9 = (c5I(X +E 6)( - (4241I1_ + E 7L/2?.01  + €8 

The total flux leaving the regional aquifer above the separating flow line at 
x = L + B12 (figure 6.4.2) equals the flux through the separating layer SLaV 

between the centres of the surface waters and also equals the sum of the 
flux through the regional aquifer above the separating flow line at x = L 
and the flux through the separating layer between x = L and x = L + B12. 

Lav(- + B) 	q 1 (L)H 1  + 58av 13/'2 	 (6.4.24) 

where: 

5Bav = average flux through the bottom of the surface water with width 
B12 [LIT] 

The horizontal flux at x = L is found by using (6.4.18) with the derivative 
of (6.3.8). 

q 1 (L) = pc10k1I2o1 	 (6.4.25) 

where: 
= [(€€6 - € 5102 - € 71 

Similar to expression (6.4.6), the flux through the bottom of the surface 
water 5Bav  can be described by (reference level = 0): 

5Bav = p - (p 1 (L) - 0)12 ]/c0 	 (6.4.26) 

Application of (6.3.8) with x = L leads to: 

5Bav = pc 11 B/(2c0 ) 	 (6.4.27) 

where: 
= 1 + (a€6 + c 5Ia) 2I2 - €7L12X01 - €9/2 

Combination of equations (6.4.24), (6.4.25) and (6.4.27) leads to an 
equation for 5Lav  The substitution of this equation for 5Lav  and (6.4.23) for 

P1Lav in (6.3.25) leads to the following equation for the feeding resistance. 

c* = €(I_ + B)/(€ioki x Hi a/).oi + € 11 B1(2c0)) 	(6.4.28) 

At first sight, it might be concluded from (6.4.28) that c*  is linearly related 
with L. However, the parameters 113 3  and 84  contain the factor L1X01  
and, therefore, the parameters € 5 to Ell also contain this factor and c*  in 
(6.4.28) is not strictly linear related with L. In subsection 6.4.2, the results 
of this expression will be compared with the length-weighted harmonic 
mean of the resistance of the layer at the bottom of the surface water and 
the feeding resistance. 
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6.4.2 Comparison of the expression based on a conceptual model in 
which the surface waters are connected to both the top aquifer 
and the regional aquifer with a more practical expression 

Context and premises 

The expression, based on a conceptual model in which the surface waters 
are connected to both the top aquifer and the regional aquifer, is com-
pared with a more practical expression based on the simple expression 
presented in subsection 6.2.1. Expression (6.4.28) is compared with the 
(length-weighted) harmonic mean of the feeding resistance (6.2.15) and 
the resistance of the layer at the bottom of each surface water (see next). 

The situation of figure 6.4.1-a occurs many times in thin top aquifers, but 
expression (6.4.28) is too complex for modeling practice. Therefore, this 
expression is compared with the hydrologists first order estimation. 

In figure 6.4.1-a, the flow in the tp aquifer can be separated into two 
parts, being: 
1 - Below the surface water the flow is approximately vertical through the 

bottom layer of the surface water. 
2 - In the domain between the borders of the surface waters the flow is 

largely similar to the flow is sketched in figure 6.1 .2-b describing the 
situation in which the feeding resistance is determined. 

So, the flow from the surface water to the regional aquifer in flow system 
above the separating flow line in figure 6.4.1 partly meets the vertical 
resistance c0  over twice the length B/2 and partly meets the feeding resist-
ance c*  over the length L. Assuming that the head in the regional aquifer 
is about constant, the difference between this head and the surface water 
level is equal in the two parts. Then, the combined feeding resistance 
c*B + L over the entire length B + I can be estimated by the length-
weighted harmonic mean of the entrance resistance and the feeding resist-
ance c* (6.2.15). 

* c B + L = ( B + L)/(B/c0 + LIc*) 	 (6.4.29) 

This simple expression for the combined feeding resistance c*B + L is 
compared with the complex expression (6.4.28). The results of this 
comparison are presented in figure 6.4.3. 
In this comparison, the variation of the values of the constants, is equal to 
that described in subsection 6.3.4 (table 6.3.1). Also, the ratio of the 
feeding resistances (= (6.4.28) / (6.4.29)), presented in figure 6.4.3, is 
chosen in such a way that the large differences between these feeding 
resistances appear as a ratio smaller than 1. 

Comparison 

The main differences between the re5ults are caused by the approach of 
the length-weighted harmonic mean and by the assumption of a constant 
head in the regional aquifer used in the derivation of expression (6.2.15). 
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As mentioned before the constant head implies an infinitely large 
transmissivity of the regional aquifer. 

The largest agreements in the results occur if the transmissivity of the 
regional aquifer is much larger than the transmissivity of the top aquifer 
(figure 6.4.3-b and -d). Then, the head in the regional aquifer will hardly 
be affected by the surface waters and will be about constant. In these 
cases, the differences in the ratio between the feeding resistances are 
about 20 per cent and remain constant with L. 

If the transmissivity of the regional aquifer is much smaller than the 
transmissivity of the top aquifer (figure 6.4.3-d), the differences become 
large. Then, the regional aquifer is almost absent compared to the top 
aquifer and all expressions used in the comparison are no longer valid. 
Therefore, the line for the low transmissivity of the regional aquifer in 
figure 6.4.3-d and the line for the high transmissivity of the top aquifer in 
figure 6.4.3-b should be disregarded (similar to what is done with figure 
6.3.6-d). 

If the resistance of the separating layer is small (figure 6.4.3-c), the ratio 
between the feeding resistances is about 1. This can be explained in the 
same way as in the previous comparison (figure 6.3.6-0. In the other cases 
in figure 6.4.3-c, the ratios between both feeding resistances differ more 
from 1, but remain within .5 and 1 and for large L they become constant 
with L. 

The larger the width of the surface water, the more effective the surface 
water will be (figure 6.4.3-e). Similar to the previous comparison (figure 
6.3.6-e), a large width is comparable with a low value of the entrance 
resistance and vice versa. 

From this analysis, it follows that the ratio of the feeding resistances of the 
considered cases remains generally within the range 0.5 - 2.0. In general, 
the geohydrological parameters are known not more accurate than with a 
factor 2 (transmissivity) or 10 (hydraulic resistance). Taking this into account 
together with the complexity of the situation considered, it may be con-
cluded that the length-weighted harmonic mean is an acceptable estimation 
in many cases of groundwater modeling, for instance in a model for 
national groundwater management in which details are lumped. 
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Figure 6.4.3 	Ratios between the feeding resistances of equations 
(6.4.28) and (6.4.29) 

	

6.5 	Concluding remarks 

The Cauchy boundary condition can be used to describe the interaction 
between many surface waters in a top aquifer and the groundwater in a 
regional aquifer (which is the upper aquifer of the actual computer model). 

The two constants in the Cauchy oundary condition (6.2.13).are called 
the feeding resistance and the modified surface water level. The feeding 
resistance can be described in terms of the geohydrologic constants, 
whereas in the modified surface water level also the natural recharge is 
included. 

Simple expressions are proposed for the feeding resistance (6.2.20) and the 
modified surface water level (6.2.21). These simple expressions can be 
implemented simply in computer programs such as spreadsheets and GIS 
manipulations. Also, these expressions can be used in mathematical ma-
nipulations (differentiation and integration) as will be shown in chapter 7. 
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The simplifications used in the derivation of these simple expressions are 
acceptable, which follows from a comparison with expressions ((6.2.38) 
and (6.2.39)) derived without these simplifications. 

A change of the boundary condition at the separating layer (a constant 
flux to the regional aquifer instead of a constant head in the regional 
aquifer) causes results that are significantly different from the results of the 
proposed expressions, which follows from the comparison of expressions 
(6.2.20) and (6.2.21) with expressions (6.2.47) and (6.2.48). 

The boundary condition at the separating layer (a constant head in the 
regional aquifer) leads to results of the feeding resistance ((6.2.15) as 
simplification of (6.2.20)) that compare well with the results of the feeding 
resistance (6.3.29) derived for a conceptual model that includes the flow in 
both the top aquifer and the regional aquifer. 

A conceptual model for the derivation of the feeding resistance should 
include a net flux between the surface waters in the top aquifer and the 
groundwater in the regional aquifer. 

Conceptual models of two aquifers with boundary conditions based on 
symmetry in the regional aquifer can not be used for the derivation of the 
feeding resistance, because no net flux between the surface waters in the 
top aquifer and the groundwater in the regional aquifer occurs. 

In situations where the surface water is in direct contact with both the top 
and the regional aquifer, the feeding resistance often can be approximated 
by a simple expression (6.4.29) based on the simple expression for the 
feeding resistance and the resistance of the bottom layer of the surface 
water. 

In the example of section 7.6, the application of the simple expression for 
the feeding resistance is demonstrated. In chapter 8, its application in 
NAGROM is described. 
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7 ON THE DETERMINATION OF THE FEEDING 
RESISTANCE IN CASES WITH ARBITRARY SITUATED 
SURFACE WATERS 

7.0 Summary 

A theoretical basis is presented for the determination of the feeding 
resistance in areas with arbitrary situated surface waters. In such areas, the 
groundwater flow is schematized as either predominantly parallel or pre-
dominantly axial-symmetric flow. In sub-areas with predominantly parallel 
flow, the representative feeding resistance can be based on the representa-
tive distance between arbitrary situated surface waters calculated from the 
drainage density. The drainage density is the length of surface waters in a 
sub-area divided by the size of that sub-area. In sub-areas with predomi-
nantly axial-symmetric flow, an expression for the feeding resistance is 
derived, which shows that this feeding resistance is not related to the 
drainage density. The representative feeding resistance of the entire area is 
the area-weighted harmonic mean of the feeding resistances of all the sub-
areas. 

Considering the complexity of the problem, the feeding resistance in 
an area with arbitrary situated surface waters can often be based on a 
simplified version of the drainage density and the simple expression 
for the feeding resistance that has been presented in chapter 6. The 
simplified version of the drainage density is the length of surface 
waters in the entire area divided by the size of that area. Doing this, 
the effects of the feeding resistance in areas with predominantly axial-
sym metric flow are neglected. In an example based on reality, the 
results of this approach are compared to the results of the area-
weighted harmonic mean of the feeding resistances of all the sub-
areas. The results appear to be comparable in many cases, which also 
follows from a theoretical comparison of the same results. 

7.1 	Introduction 

As described in chapter 6, the feeding resistance is an important 
parameter in the Cauchy boundary condition that describes the 
interaction between many surface waters and the groundwater in a 
regional aquifer. The expressions for the feeding resistance in chapter 
6 apply to parallel and equidistant surface waters only. In practice 
(Querner, 1993), these expressions are used also to determine the 
feeding resistance in situations with arbitrary situated surface waters. 
In these situations, the representative distance between the surface 
waters used in the expression for the feeding resistance is often taken 
equal to the reciprocal of the drainage density, which is defined as the 
length of surface waters in an area divided by the size of that area. 
Such an area should be bounded in such a way that the drainage 
density is approximately constant inside the area. Also, the 
geohydrologic parameters should be averaged over that area. 
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In this chapter, a theoretically based approach is presented for the 
determination of the feeding resistance in areas with arbitrary situated 
surface waters. In the derivation of this approach, the groundwater flow is 
assumed to be either predominantly parallel or predominantly axial-
symmetric. In areas with predominantly parallel groundwater flow the 
feeding resistance is based on expression (6.2.20). For the feeding 
resistance in an area with predominantly axial-symmetric flow a new 
expression is derived. The so-called representative feeding resistance in an 
area with arbitrary situated surface waters is determined by the area-
weighted harmonic mean of the feeding resistances in the different sub-
areas in which either predominantly parallel or predominantly axial-
symmetric flow is assumed. Next, the steps used in the derivation of the 
representative feeding resistance are introduced. 

The derivation of the representative feeding resistance in an area with 
arbitrary situated surface waters starts with the subdivision of the area of 
concern in sub-areas - bounded by water divides, path lines and surface 
waters - with predominantly parallel flow or with predominantly axial-
symmetric flow. These sub-areas are determined in such a way that they 
have simple shapes, such as triangles or rectangles (see example in section 
7.6). For each different type of sub-area (so either a triangular or a 
rectangular shape with parallel flow or a triangular shape with axial-sym-
metric flow), an expression for the feeding resistance is derived. 

In the sub-areas with parallel flow, it is assumed that the conceptual model 
for the feeding resistance (figure 6.2.1) can be used in sections along 
arbitrary but predominantly parallel path lines. In the analysis of the 
different expressions for the feeding resistance in chapter 6, it has been 
shown that the distance between the surface waters is an important 
parameter in the determination of the feeding resistance. In a sub-area 
with arbitrary situated surface waters, the distance between the surface 
waters may vary and a so-called representative distance between the 
surface waters is needed to determine the representative feeding 
resistance. In this thesis, the representative distance between the surface 
waters is defined as the distance that leads to the representative feeding 
resistance in that sub-area to be used in the Cauchy boundary condition 
(6.2.13). 

In the first step concerning sub-areas with parallel flow, the feeding 
resistance and the representative distance between the surface waters is 
determined in the simple theoretical case of a triangular area (with pre-
dominantly parallel flow) between a straight surface water and a straight 
water divide forming a corner with an angle smaller than 90° (section 7.3). 
In this case, a relation between the feeding resistance and the representa-
tive distance between the surface waters will be derived based on 
expression (6.2.20). 

In the following steps concerning sub-areas with parallel flow, relations 
between these two parameters will be derived for sub-areas with pre-
dominantly parallel flow between surface waters forming a rhomb and 
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forming a parallelogram. It appears that in these cases the representative 
distance between the surface waters can be based on the reciprocal of 
the drainage density. This relation can be used also in many situations of 
sub-areas with predominantly parallel flow. So, the drainage density is 
important in the determination of the representative feeding resistance. 
Therefore, it is discussed separately in section 7.2. 

For (triangular) sub-areas with axial-symmetric flow, an expression for the 
feeding resistance will be derived based on the analytic solution for flow 
towards a well in a semi-confined aquifer (section 7.4). In this situation, 
the drainage density is not applicable. 

Having the expressions for the feeding resistance in these sub-areas, any 
area with arbitrary situated surface waters can be covered completely by 
sub-areas with a value for the feeding resistance. Then, the overall feeding 
resistance in that area can be found (section 7.5). In an example with 
surface waters situated as it occurs in reality (section 7.6), the feeding 
resistance is compared with its practical version. 

7.2 	The drainage density 

In his summary of drainage-basin characteristics Horton (1932) mentions 
that the drainage density has first been suggested by Newman (1900) 
as an important parameter in drainage applications. Horton defined the 
drainage density as the sum of the lengths of all surface waters in a 
drainage basin divided by the area of that basin. He also mentioned, 
that the reciprocal of the drainage density is the average distance 
between the surface waters and that one-half the reciprocal of the 
drainage density is the average horizontal distance between streams and 
appurtenant watershed-lines". However, no proof of this is given and it 
is assumed by the author that the boundaries of the drainage basins are 
the surface watershed-lines. 

In this thesis, the definition of the drainage density M [1/1_I is adapted for 
the use in the determination of the feeding resistance in arbitrary situations 
and is expressed by: 

ii 	J 
M = 	( l 1 ) / 1Aj 	 (7.1) 

where 	is the sum of the lengths of all surface waters (I) in sub-area A1  
and A1  is a sub-area in which expression (6.2.20) can be used to determine 
the feeding resistance. Expression (7.1) applies to situations with predomi-
nantly parallel flow only. If the sub-area A1  is bounded by groundwater 
divides and path lines, the surface waters are completely inside that sub-
area and the lengths of these surface waters l  can be used straight 
forward in the summation 	If the sub-area A1  is (partly) bounded by a 
surface water, only half of the width of the surface water is draining 
inside the sub-area. In other words this means that half of the 'draining 
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capacity of the surface water is used. Because only the length of 
the surface water is taken into account here, the half of the 
draining capacity is included by taking half of the length of this 

surface water (so 1/2) in the summation 

The reciprocal of the drainage density is exactly equal to the 
distance between parallel equidistant surface waters. This can easily 
be shown by taking J = 1 in (7.1) between any pair of water 
divides. Because in this situation expression (6.2.20) holds in any 
(rectangular) area between water divides, in (7.1) the sum of the 
lengths of I surface waters with equal lengths is divided by the 
product of I times the distance between the parallel surface waters 
and the length of the surface waters. The reciprocal of this result is 
the distance between each pair of the surface waters. This distance 
is the representative distance to be used for the determination of 
the representative feeding resistance, because all distances between 
the surface waters are equal. So in this situation, the representative 
distance between the surface waters L rep  (see definition in section 
7.1) is exactly equal to the reciprocal of the drainage density, which 
is expressed by: 

L rep = 1/M 
	

(7.2) 

Next, it will be shown that this relation is approximately exact also 
for use in the determination of the representative feeding resistance 
in a situation of an area with parallel non-equidistant surface waters 
(figure 7.1). 

L 

Figure 7.1 	Arbitrary set of parallel surface waters 

Consider a strip in normal direction to an arbitrary combination of 
infinitely long parallel surface waters (figure 7.1). In this strip (with 
width I), the length of each surface water I j,j  equals I. In sub-domain 
A between the surface waters j and  j + 1 inside the strip expression 
(6.2.20) holds, because the path lines are parallel and their lengths 
are equal. Because each sub-domain A is bounded by two surface 
waters, expression (7.1) can be used in each sub-domain A by 
taking half of the length (l 1 /2) of the two (I = 2) bounding surface 
waters in the summation 
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The representative feeding resistance c*( H indicates parallel flow) for the 
entire area At,t  equals the area-weighted harmonic mean of the feeding 
resistance c*  of the sub-domains A,  which rule is based on summation of 
parallel resistances: 

AtOt/c* I  = 	 (7.3) 

The area of each sub-domain can be expressed by A = LJ I J, where L is 
the distance between surface waterj and surface waterj + 1 (figure 7.1). 
Similarly, the entire area A t,, t  can be described by the expression A t, t  = 
L rep l sum  where the meaning of 'sum  will become clear in expression (7.4). 
As described in the text with expression (6.2.20), under certain conditions, 
the feeding resistance is approximately linearly related with the (repre-
sentative) distance between the surface waters. In this derivation, it is 
assumed that both c and c*,  are linearly related with Lrep  and L respec-
tively by one and the same constant C. This implies that c = CL rep  and 
c*, = CL I , where C is determined in expression (6.2.23). The expressions for 

c , A and 	derived in this paragraph are substituted in expression 
(7.3), leading to: 

ii 

sum - 	(l) 	 (7.4) 

So, sum  appears to be the sum of the lengths of all surface waters in the 
entire area. In expression (7.1), the denominator equals A t, t , which leads 
to the following elaboration: 

ii 
M = 	(1) / At0t = l sum  / t rep l sum  = l/Lrep 	 (7.5) 

which shows that, also in this situation, the drainage density equals the 
reciprocal of the representative distance between the surface waters. 

The distances between the surface waters may vary so much in the area of 
concern that the feeding resistance is not linearly related with the distance 
between the surface waters as mentioned above (see also text with 
expression (6.2.23)). Then, the following steps can be carried out to derive 
the representative feeding resistance. (1) The drainage density is 
determined for a sub-area taken so small that the linear relation can be 
used. (2) The representative feeding resistances for these sub-areas are 
determined. (3) The representative feeding resistance over the entire area 
of concern is determined using (7.3), in which the summation applies to 
the sub-areas in which the linear relation holds. 
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7.3 	The representative feeding resistance in areas with predominantly 
parallel flow 

7.3.1 The representative feeding resistance in an area between a 
straight surface water and a straight water divide forming a corner 
with an angle smaller than 900 

In figure 7.2-a, a situation is presented of groundwater flow between two 
surface waters in the top aquifer. This flow pattern is similar to that 
sketched in the sectional profile of figure 6.1.2-b and is computed with a 
model of analytic elements. The surface waters are simulated by numerous 
line-elements with a specified head (= surface water level, see subsection 
3.3.2), by which the variation in the flux to the surface water is accounted 
for. 

In figure 7.2-a, the path lines start along the bisector representing the 
water divide (with almost stagnant flow), then curve (in the zone with very 
slow flow) to become more and more parallel before entering the surface 
waters in normal direction. The groundwater flow in the situation of figure 
7.2-a occurs mainly near the surface waters. In this part of the area, the 
path lines are approximately parallel. So, the larger part of the resistance to 
flow is felt in the area with approximately parallel path lines. Therefore, the 
flow is schematized as presented in figure 7.2-b. The greatest differences 
between the flow patterns in parts a and b of figure 7.2 appear near the 
water divide, where the flow is negligible compared to the flow near the 
surface waters. 

In real situations, it may occur that the water infiltrated in the top aquifer 
at some distance from the surface waters directly flows to the underlying 
regional aquifer. The larger the area in which this occurs, the shorter the 
path lines to the surface waters in the top aquifer and the more the 
remaining parts are approximately straight. Then, the approximation of 
straight path lines becomes more and more realistic. For the picture of 
figure 7.2-a, the parameters in the model are chosen such that all path 
lines in the top aquifer cover the full range between the water divide and 
the surface water. 
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Figure 7.2 	Flow (a) between two straight surface waters, 
schematized (b) to determine the feeding resistance. 

In the case with the schematized flow pattern (figure 7.2-b), the flux to 
the surface water (e.g. over an infinitesimal distance dx) increases with the 
distance to the corner, because the inflow area increases. This agrees with 
the distribution of the flux to the surface water in the situation of figure 
7.2-a. 

The representative feeding resistance is determined for the triangular 
domain between the surface water, the water divide and the bounding 
path line at distance X from the corner (figure 7.2-b). Along each path 
line in this triangular domain, the conceptual model of figure 6.2.1-a is 
assumed to be valid. The vertical flux s(x) through the separating layer 
(figure 6.2.1) in the triangular domain is defined as a function of the 
distance x to the corner by using expressions ( 6.2.13) and (6.2.20). It 
follows from (6.2.13), that s(x) is constant (the line-average flux) along 
each path line. The area-average flux 5av  is determined by integration of 
s(x) over the triangular domain and divided by the area of that domain. 
This area-average flux is substituted in expression (6.2.13) to determine 
the representative feeding resistance over the triangular domain. 

In a strip of width dx, representing a flow conduit along which the 
conceptual model of figure 6.2.1-a is assumed to be valid, the flux dS 
through the separating layer [L 3 /T1 is: 

dS = s(x)L(x)dx 
	

(7.6) 

where L'(x) is the distance between the surface water and the water divide 
along the schematized path line at x. The flux s(x) is derived from (6.2.13) 
in which c*  comes from (6.2.20). With L'(x) = xtan (where f is the 
corner between the surface water and the water divide), this leads to: 

d[S/(pw p0)1 = R2dx/[R1  + ctnh(x')] 	 (7.7) 
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where: 
R 1  = 2X0R3 /R4 	 [-I 

= X02 /(R4tan7O) 	 [L2 /T] 
R3  = 0 + 13)co/B + rrad 	 [TILl 
R4  =(c0 +c 1 ) 	 [T] 
x 	= (xtan7)/A9 	 [-I 

where 3,  X, B, c0 , c 1  and rrad  have been explained in subsection 6.2.2. 
After rewriting ctnh(x) in exponential functions with x', integration for 
0 !~ x !~ X, so for 0 x X with X = Xtan7o/X0  leads to: 

S 	 2R 1 	R2  R0 (X') = R2X' 1 -+ 	In 
R-1 	2(R 1 )+1 

(R 1 +1) + (1R 1 )e 2 x + 

+ 	R2 	(1-R 1 ) + (R 1 +1)e-2x' 	
(7.8) 

2(1-R 1 ) 	2 

where R0(X) is defined to simplify the expressions in the forthcoming part 
of the derivation. The representative feeding resistance for parallel (indexF) 
flow in a corner (index ) between the water divide and the surface water 
c* , is determined by using (6.2.13) in which 5av  is the average flux over11  
the triangular domain A: 

c* 
.11= 

(p* (Pi)/Sav 	 (7.9) 

Using s av = S/A, A = XL/2, X = L/tan -f and (7.8) in (7.9), the expression 
for the representative feeding resistance becomes: 

c* 
, 

= 1_ 2  / 2R0(X)tan7° 
	

(7.10) 

This expression describes the representative feeding resistance for the 
triangular domain and is valid if the corner between the surface water and 
the water divide has an angle smaller than 90 0 , because then the path line 
closes a triangular domain (figure 7.2-b). This means that the corner 
between the surface waters is restricted to an angle smaller than 1800.  In 
the example of subsection 7.6, it will be shown that surface waters forming 
a corner with an angle larger than 180° cause essentially non-parallel flow 
to the edge of the corner (along the rest of the line parallel flow occurs). 
This flow situation is classed in the category of cases with predominantly 
axial-symmetric flow. The feeding resistance for areas with this type of flow 
will be derived in section 7.4. 

The expression (7.10) does not give a simple relation between the 
representative feeding resistance and the representative distance between 
the surface waters Lrep.  After some numerical experiments with the 
distances used in expression (6.2.20), it appeared that the results of (7.10) 
can be compared with the results of (6.2.20) if the distance between the 
surface waters Lrep  is replaced by the maximum distance L between the 
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surface water and the water divide in the observed area (see figure 7.2-b). 
As shown in figure 7.3, the ratio between the results of expression (7.10) 
and of (6.2.20) with Lrep = L remains within 1 and 1.15 for an arbitrary 
range of values of c 1 . Similar distributions of this ratio are found for all 
other parameters, including y0 . Apparently both expressions behave similar 
for large and small values of Lrep  and only deviate in a minor sense in the 
in between range for L re p. 
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Figure 7.3 	Ratio between feeding resistance of (7.10) and of (6.2.20) 
with Lrep = L. 

This use of L in (6.2.20) implies that the representative distance between 
the surface water and the water divide (see scheme of figure 6.2.1) will be 
equal to L/2, which occurs at X/2 in figure 7.2. Although this seems like 
linear averaging, it does not necessarily mean that a simple linear relation 
between L and c*  has to exist in the entire corner area, because both 
feeding resistances in the ratio of figure 7.3 are partly non-linear with L. 

From the fact that the ratios in figure 7.3 (where -rep = L) are close to 1, it 
is concluded that the representative distance between surface waters as 
used for the calculation of the representative feeding resistance in a trian-
gular area - bounded by a path line, a surface water and a water divide - 
with predominantly parallel flow can be estimated by the maximum 
distance between the surface water and the water divide in that area. 

7.3.2 The representative feeding resistance in the situation of parallel 
flow in quadrangular areas bounded by surface waters 

For the determination of the representative feeding resistance, the ground-
water flow between four surface waters forming a rhomb is presented in 
figure 7.4-a in a situation similar to that in figure 7.2-a. The path lines 
have been computed using a model of analytic elements (figure 7.4-a) and 
schematized afterwards (figure 7.4-b). As shown in figure 7.4-b, the 
rhomb can be subdivided into eight triangular sub-domains with predomi-
nantly parallel flow. Each of these sub-domains is bounded by a surface 
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water, a water divide and a path line similar to the situation in figure 7.2-b. 
The maximum distance between the water divides and the surface waters 
is equal for all eight triangular sub-domains. Using the final conclusion in 
subsection 7.3.1, it follows that the representative distances between 
surface waters are equal in all eight triangular sub-domains and, therefore, 
the representative feeding resistances in these areas are equal. So, the 
representative feeding resistance of the rhomb area becomes equal to the 
feeding resistance of each of these triangular sub-domains. 

--water divide 	 flawlirre 

- surface water 	---- boundieg path line of triangular area 

Figure 7.4 	Flow (a) between four surface waters forming a rhomb, 
schematized (b) to determine the feeding resistance. 

The feeding resistance for the rhomb area can be based on (6.2.20) taking 
the representative distances in the sub-areas equal to the distance between 
the surface waters and the point of intersection of the water divides. This 
distance also equals half the distance between each pair of parallel surface 
waters. The representative distance between the surface waters resulting 
from the drainage density of the rhomb area agrees with this: Figure 7.4 
represents a part of an area with two crossing sets of equidistant parallel 
surface waters. The length of surface waters in any rhomb-shaped area 
bounded by surface waters is twice as large as in the case of parallel 
surface waters in figure 7.1. This results in a representative distance that is 
half the distance between two parallel surface waters. So, the drainage 
density leads to the correct representative distance for the representative 
feeding resistance in the rhomb area. 

In figure 7.5-a, the flow between four surface waters forming a parallelo-
gram is presented in a situation similar to that in figure 7.2-a and this 
computed flow pattern is schematized in figure 7.5-b. The latter figure 
forms the basis for the derivation of the representative feeding resistance in 
a parallelogram area. The parallelogram area can be subdivided in eight 
triangles forming two half-rhombs and two rectangular areas. In the two 

half-rhombs, the representative feeding resistance can be derived as 
described in the paragraph above, which means that it can be based on 
the representative distance following from the drainage density. In the 
rectangular sub-domains the flow is equal to flow between two parallel 
surface waters (section 7.2). The feeding resistance in each of these sub-
domains agrees with the representative length based on the drainage 
density. So, the feeding resistance in each sub-domain of the parallelogram 
area can be based on the respective drainage densities. 



' iTTi 7  
/rface water 

bounthng path line of triangular area 

Figure 7.5 	Flow (a) between four surface waters forming a paral- 
lelogram, schematized (b) to determine the feeding 
resistance. 

The representative feeding resistance c*  of the entire parallelogram area A 
is determined by the area-weighted harmonic mean of the feeding 
resistances of the sub-domains, expressed by: 

A/ c * =  A /c* j  + Aai /c* rj 	 (7.11) 

where c* J  is the feeding resistance of the rectangular (= index ) sub-
domain A,, j  and c*  is the feeding resistance of the triangular (= index A) 
sub-domain Aa i. 

Expression (7.11) will be reworked in a way that is similar to the derivation 
of expression (7.4) from expression (7.3). The areas of the two (J = 2) 
rectangular sub-domains are described by A = L1 l 11  and those of the 
eight OA = 8) triangular sub-domains by Aa j = 	The area of the 
parallelogram is described by A 11 = L rep l sum , where I SUM  will be determined in 
expression (7.12). Again, it is assumed that one linear relation exists 
between the different feeding resistances c*  and the distances between the 
surface waters in the different sub-areas. So, c*H  = CL1  is taken for the 
rectangular sub-domains, c* AJ  = CL1 /2 is taken for the triangular sub-
domains (see last paragraph of sub-section 7.3.1) and c*, = CL rep  is taken 
for the parallelogram area. Substitution of these expressions in expression 
(7.11) leads to: 

J1l 	Ja' 
I sum  - 	ljj + 
	

(7.12) 

SO, I, is equal to the total length of all surface waters in the parallelo-
gram, which means that expression (7.12) is equal to expression (7.4). 



Substitution of this expression and of ALl  = L rep l sum  in expression (7.1) leads 
to expression (7.5). So, the drainage density can be used to determine the 
representative distance between surface waters for the computation of the 
representative feeding resistance in the parallelogram area, as long as one 
linear relation (so a single value of C) exists between the different feeding 
resistances and the representative distances for all sub-domains as well as 
for the entire parallelogram area. In situations where this linear relation is 
not valid, the approach described in the last paragraph of subsection 7.3.1 
can be used. 

7.3.3 The representative feeding resistance for an arbitrary area with 
predominantly parallel flow bounded by surface waters making 
corners with angles smaller than 1800 

Any arbitrary area bounded by surface waters making corners with angles 
smaller than 1800  can be subdivided in triangles and rectangles similar to the 
way shown for the parallelogram area. If again, the linear relation mentioned 
in the last paragraph of subsection 7.3.2 exists, expression (7.11) leads to 
expression (7.12). The resulting 'sum  can be used in expression (7.4), which 
leads to expression (7.5) and the drainage density is again the reciprocal of 
the representative distance between the surface waters. So, the drainage 
density (7.1) can be used to determine the representative distance in any 
area with predominantly parallel flow bounded by surface waters forming 
corners with angles smaller than 180°. If the linear relation does not exist, 
the approach described in the last paragraph of subsection 7.3.1 can be 
used. 

7.3.4 Discussion of flow pattern analysis in literature 

Youngs (1992) analyses patterns of flow to surface waters forming 
amongst others a rectangle and a parallelogram by using both analytic and 
numerical solutions. He presents the distribution of the horizontal flux in 
the area together with that of the discharge potential (expression (3.5)). 
His pattern of the discharge potential in the case of the parallelogram is 
essentially the same as the pattern of the groundwater head in figure 7.5, 
which is to be expected because in both cases the transmissivity is 
constant, so a linear relation between the discharge potential and the 
groundwater head exists (see equation 3.6). 

Youngs mentions that the flow to the surface waters decreases to zero in 
edges of corners between surface waters with angles smaller than 90°. For 
corners with angles greater than 90°, he mentions that the flux to the 
corner is non-zero but remains finite. In his text, he does not mention that 
the angles should be smaller than 180°. The analysis in this thesis agrees 
with Youngs observations concerning the flux to the edges of the corners 
(between surface waters) with angles smaller than 90° and for corners with 
angles greater than 180° (which case will be discussed in section 7.4). For 
corners with angles between 90° and 180°, the schematized models of 
figures 7.2-b, 7.4-b and 7.5-b result in no flow to the edge of these 
corners, which is most likely because of the following. Both in the cases of 
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Youngs (1992) and in the cases discussed in this section, the surface waters 
form a head-specified boundary, which causes that all path lines enter or 
leave in the direction perpendicular to the surface waters. In all cases, the 
water divide is along the bisector between the surface waters starting from 
the edge of the corner. In the edge of the corner the distance between the 
surface water and the water divide is zero, so the length of the path line in 
the edge in perpendicular directioi to the surface water is zero. So, no path 
line can exist to or from the edge of the corner between the surface water 
and the water divide with an angle smaller than 900.  Therefore, there can 
not be any flow from (or to) the edge of a corner between surface waters 
that is smaller than 180°. This is oposite to Youngs statement mentioned 
above. It is most likely, that Youngs conclusions are affected by numerically-
based solutions e.g. for the case o flow in a parallelogram area. 

7.4 	The feeding resistance in situations with predominantly axial- 
symmetric flow 

Figure 7.6-a shows the flow pattern between infinitely long parallel surface 
waters which are all interrupted over an equal distance, computed by a 
model of analytic elements. This flow is schematized in figure 7.6-b, which 
shows that axial-symmetric flow is assumed near the tips of the surface 
waters and parallel flow in the rest of the area. Similar to the flow pattern in 
figure 7.2, the flow close the surface waters predominantly determines the 
schematized flow pattern. The flow near each tip is approximately axial-
symmetric and is assumed to be centred at that tip. 

-- wate,dde 

- surface water 

Figure 7.6 	Flow between infinitely long, parallel surface waters with 
equal interruptions 'a), schematized to determine the 
feeding resistance (b). 
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Also, if the angle between surface waters is greater than 1800,  the flow to 
the edge of the corner is approximately axial-symmetric (see example in 
section 7.6). 

In this section, an expression for the feeding resistance in an arbitrary area 
with axial-symmetric flow will be derived, which is based on a conceptual 
model that is comparable to the one used in the derivation of (6.2.20). The 
flow to the tip of the surface waters is schematized as flow to a well. The 
flow in the top aquifer is bounded by an impermeable circular boundary at 
a certain distance of the well. So, along a radius between the well and the 
impermeable boundary the schematization of figure 6.2.1-b can be used. 
The derivation of the expression for the feeding resistance starts with the 
case of axial-symmetric flow in a segment of the circular domain. The 
expression for the feeding resistance derived for this case is used to derive 
an expression in the case of axial-symmetric flow in a triangular area. The 
expression for the feeding resistance in an arbitrary area with axial-sym-
metric flow is derived based on the expression for the feeding resistance in 
a triangular area. 

7.4.1 The feeding resistance in a situation of axial-symmetric flow in a 
circular area 

For the derivation of an expression for the feeding resistance for axial-
symmetric flow, the flow from a tip of a surface water is considered 
(figure 7.7). The groundwater flows axial-symmetric via the top aquifer 
and the separating layer to the regional aquifer. Similar to in derivation of 
(6.2.20) (compare the text with expression (6.2.3)), it is assumed that the 
piezometric head o l  in the regional aquifer is not affected by this flow. 
This assumption is acceptable if the flux from the well is small compared 
to the flux in the regional aquifer. 

ow 

Co 	Pn=o 
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ic 	
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/ 	 .Li....L........- 
, 
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Figure 7.7 	Conceptual model to determine the feeding resistance in 
a situation with axial-symmetric flow 

The analytic solution for the case of figure 7.7 can be deduced from the 
general solution of a well in a semi-confined aquifer by changing the place 
of the separating layer from the top to the bottom of this aquifer (which is 
the actual top aquifer). The general solution for this case can be found e.g. 
in Strack (1989, pp. 165-169) and is expressed by: 

1(r) = C 1 1 0(r/X0) + C 2 K0(r/X0 ) 	 (7.13) 
0(r) = [- C1I1(00) + C2K1(r/X0]/?0 	 (7.14) 
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where 1 0  and K0  are modified Bessel functions of the first and second kind 
and of order zero, 1 1  and K 1  are the same functions of order one, C 1  and C2  
are the integration constants, 1(r) is the discharge potential at r [L 3 /T], and 
0(r) is the total flux through the circle at r [L 3/T]. The well simulates the tip 
of the surface water which leads to the following condition at the well 
radius (see expression (14.47) on page 169 in Strack, 1989): 

c1(r) = k0H0(q0(r) - Pi) 	 (7.15) 

Here, the surface water level p is renamed to the groundwater head po(r) 
in the top aquifer at the well radius r and Pi  is the head in the regional 
aquifer. The outer boundary at r = R is impermeable (compare figure 6.2.1-
b), leading to the condition: 

Q(R)=0 	 (7.16) 

Solution of the integration constants leads to: 

C i  = T(r)/lK 	 (7.17) 
C2  = I(r)/lK2 	 (7.18) 

where: 
1K1 = 10(r/X0) K 1 (R/X0) / 1 1 R/X0) + Ko(r/20) 
1K2 = 10(r/A0) + K0(r/X0) 1 1 (R/2 0) / K 1 (R/2 0) 

The total flux through the separating layer in the circular domain inside 
= R equals the flux Q(r) through the well radius r. This flux becomes 

((7.17) and (7.18) in (7.14)): 

Q(r)= 't(r)IK3/2 0 	 (7.19) 

where: 
1K3  = Ki(r/X0)/lKi - 11(r/23)/lK2 

From numerical experiments, it follows that 1K3  is approximately constant 
for R > 4ko  and rw  << Xo. The average flux SRav  through the separating layer 
[LIT] inside the circular area with radius R becomes: 

5Rav = Q(r)IirR2 	 (7.20) 

This average flux is valid in any segment of the circular area. The feeding 
resistance is based again on the Cauchy boundary condition (6.2.13), which 
is adapted to the axial-symmetric case. 

5Rav (po(r) - (p1)/c*vR 	 (7.21) 

where cVR  is the feeding resistance for axial-symmetric flow in a circular 
area [T]. Combination of (7.15), (7.19), (7.20) and (7.21) leads to: 

cVR = c 1  (R/X0) 2  7tX0/1K3 	 (7.22) 
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In this case, the tip of the surface water is in direct contact with the top 
aquifer. Between the top aquifer and the surface water an entrance resist-
ance c0  may occur (see figure 7.7-b). This resistance is assumed to occur at 
the boundary of the well and the thickness of the layer generating the 
entrance resistance is neglected. The groundwater head at the boundary 
between the entrance resistance layer and the top aquifer is defined as 
(po(r'). Continuity of flow across this layer gives: 

Q(r) = 2irH0r(po(r) - p0(r'))/co 	 (7.23) 

In order to account for the entrance resistance c0 , p0(r) in (7.21) is 
replaced by p0(r). Combination of this modified (7.21) with (7.19), (7.20) 
and (7.23) leads to: 

cVR = R2ItKR 	 (7.24) 

where: 
KR =lk+hIK 
€ 	= 27trH0/co 
K 	= k0H0 1K3 /X0  

This expression for the feeding resistance in the case of axial-symmetric 
flow is comparable with expression (6.2.20), except for that the radial 
resistance (6.2.17) is not included (which should account for the partial 
penetration of the surface water if present). In the following, it is assumed 
that the radial resistance is accounted for by an adaption in the value of the 
entrance resistance c0 . 

Because the case is axial-symmetric, expression (7.24) is valid in any 
segment bounded by two path lines and the circular boundary at R. This 
will be used in the following step (sub-section 7.4.2) on the way to an 
expression for the feeding resistance in an arbitrary area with axial-
symmetric flow. 

7.4.2 The feeding resistance for axial-symmetric flow in a triangular area 
bounded by path lines and a straight water divide 

In this sub-section, expression (7.24) will be used to derive an expression for 
the feeding resistance for axial-symmetric flow in a triangular area bounded 
by path lines and a straight water divide as presented in figure 7.8. In this 
figure, expression (7.24) holds in the segment with angle dy. The area dA 
of this segment equals R(y) 2dy/2 and the total flux through the separating 
layer in the segment dS is: 

dS = 5Rav R(' 2dY2 	 (7.25) 

Combination of the expressions (7.21), (7.24) and (7.25) leads to: 

d[S/(p0 - () = R(7)2dy/2c* = 1/21tKdy° 	 (7.26) 
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In the forthcoming integration over y, KR  is assumed to be constant within 
the triangular sub-domain. Because 1K 3  is the only term in expression (7.24) 
that varies with y,  1K3  is implicitly assumed to be constant. Following from 
expression (7.19), it is needed that either R(y) is larger than 4y o  or R(y) 
should be about constant inside this area. (If 1K 3  is not constant, the inte-
gration should be carried out over smaller triangular sub-domains in which 
R(y) is constant. After that step 3 described in the last paragraph of section 
7.2. should be carried out). Integration of expression (7.26) between 
0 	''0 (figure 7.8) gives: 

SI@p0 - 'Pi) = Y°/21tKR 	 (7.27) 

water divide 

/ 
// / Thdy 

- 	d70 	 - 

x 

Figure 7.8 	Triangular area with axial-symmetric flow bounded by 
two path lines and a water divide. 

The feeding resistance c* va  for axial-symmetric (index v) flow inside a 
triangular (index A) area is derivec from (compare expression (7.9)): 

cVA = 	- Pi)"5av 
	 (7.28) 

and with Say = S/Au , where A is the area with axial-symmetric flow, and 
expression (7.27) this leads to: 

c*va  2ItKRAV/Y° 
	

(7.29) 

This is the expression of the feedirg resistance for a triangular area bounded 
by path lines and a water divide with axial-symmetric flow. KR is assumed to 
be constant in expression (7.29) , which means that a representative value 
for R(y) (called R') over the area A should be determined. This R can be 
estimated by using the facts that KR  applies to a circle segment (because it 
originates from expression (7.24)) and that expression (7.29) applies to a 
triangular area. Stating that KR  should generate the same value of the 
feeding resistance in both areas, the criterium for R' is expressed by the 
equation c* va  = c V R, which leads to: 

R'= )(2A/) 	 (7.30) 

Expression (7.26) also follows from the statement that the size of the circle 
segment should be equal to the size of the triangular area. 
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7.4.3 The feeding resistance for axial-symmetric flow in an arbitrary area 
bounded by path lines and water divides 

The area with axial-symmetric flow in figure 7.6-b can be subdivided into 
triangles each being comparable to the one in figure 7.8. In each triangular 
sub-domain (index j), expression (7.29) in combination with expression 
(7.30) can be applied to determine the feeding resistance c* vai . In expres-
sion (7.29) the parameters A, Kr  and 70  are replaced by respectively A, Kr j 
and y. The representative feeding resistance c* v  over the entire area A 
with axial-symmetric flow is again based on the area-weighted harmonic 
mean of the feeding resistances of the sub-domains c* J , leading to: 

Av/c* v  = (Ai /c*vaj) = (^y°J /27tK R1 ) 	 (7.31) 

or: 

c-v = AV/(y°J/21tKRj) 
	

(7.32) 

If R is approximately equal for all sub-domains, this can be rewritten as: 

c*v = 21tKRAv/(Y°i) 
	

(7.33) 

So, as a first approximation the feeding resistance for axial-symmetric 
flow can be determined from the constant KR,  the size of the entire area 
A and the sum over all angles of axial-symmetric flow 176j . Obviously, 
the feeding resistance for areas with axial-symmetric flow is not at all 
related to the drainage density, because the tip of the surface water has 
no length. As expression (7.33) shows, the feeding resistance for an area 
with predominantly axial-symmetric flow is proportional to its area Av  
and that it is certainly not linearly related with the distance between the 
surface waters as the feeding resistance is in the case of an area with 
predominantly parallel flow. From expression (7.30), it may be concluded 
that A  is quadratically related with R (see also the example in section 7.6). 

7.5 	The representative feeding resistance in an area with both axial- 
symmetric and parallel flow and a comparison with its determination 
in modeling practice. 

The representative feeding resistance for an arbitrary area is derived as a 
combination of the feeding resistances in the distinguished sub-areas. These 
sub-domains can be either rectangles and triangles with parallel flow or 
triangular areas with axial-symmetric flow (see example in section 7.6). For 
each of these sub-areas, an expression for the feeding resistance is found in 
sections 7.3 and 7.4. The representative feeding resistance c* rep  for the 
entire area Atot  is the area-weighted harmonic mean (see section 7.1) of all 
feeding resistances in the sub-domains (expression (7.3)). For the compari-
son between this representative feeding resistance and the one derived in 
common practice, the feeding resistances in all sub-domains with axial-sym-
metric flow are combined to one with a representative feeding resistance 
c* for the total area Av  with axial-symmetric flow by taking the area- 
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weighted harmonic mean of the feeding resistance in all these sub-domains. 
The same applies for the feeding resistances in all sub-domains with parallel 
flow leading to the representative feeding resistance c*  for the total area 
with parallel flow A. Then, in the area Atot  including both axial-symmetric 
flow and parallel flow, the following relation holds: 

Atot/c rep  = A 1 /c + Av/c* v 	 (7.34) 

In this relation, the difference between the feeding resistance based on the 
drainage density (c* 11  and the feeding resistance without any relation to the 
drainage density (c* v) is made explicit. In the following part of this section, 
the determination of the feeding resistance based on (7.34) is called the 
accu rate approach. 

In modeling practice, the representative feeding resistance for an arbitrary 
area c* rep  (adding "to distinguish from c* rep  in (7.34)) is determined by 
using an approximate representative distance between surface waters L" in 
(6.2.20). For this approximate representative distance, the drainage density 
is simply determined by taking the sum of the lengths of all surface waters 
in the entire area divided by the size of that area. Because this representative 
feeding resistance is an approximate of c*  it is called c*, . So, in this so-
called practical approach", expression (7.34) simplifies to: 

Atot/c* rep  = A 0 /c " 	 (7.35) 

Next, this practical approach will be compared to the accurate approach by 
analysis of the ratio c* rep /c* rep . By using At0=  A ll  + A, (7.34) and (7.35) 
can be combined to: 

c * 
rep 

Il 
. 
l c * 

rep = A /A 0  >< c 	/c x (1_c * 1  /c* v) + c* /c* v 	(7.36) 

If A is small compared to A,, A t,)t  is almost equal to A 11 . Because the total 
length of all surface waters in the area are also equal, the drainage density 
(7.1) is almost equal in both cases and so the representative distance 
between the surface waters is also almost equal. Therefore, c*1  is almost 
equal to c, and the right hand side of expression (7.36) becomes almost 
equal to 1. So, c* rep  is almost equal to c* rep , which means that the 
practical approach is as good as the accurate approach. 
If Av  is not small compared to A (so A ~! A), three cases are 
distinguished: 
(1) c*> c*, , (2) c*= c * 11  and (3) c* v < c * 1  

Case 1: 
If c*> c *1  and A ~: A 11  expression (7.34) reduces to: 

Atot/c* rep = A 1 1  /c 	 (7.37) 

and divided by (7.35), this leads to a different form of (7.36): 

c* rep /c* rep - - A II /A 0  x c*, Ic 11 	 (7.38) 
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Assuming that both feeding resistances are linear with their representative 
distances between surface waters (so c* 	CL rep " and c*= CL rep ) and using 
the derivation of these distances as described above (so L rep  = A 0  / Il i  and 
L rep  = A / J) the right hand side of (7.38) becomes 1, which means that 
the practical approach leads to the accurate feeding resistance. 

Case 2: 
If c* = c * I  and A ~! A expression (7.36) can be simplified to 

Atot/c* rep At0t/c 1 
	 (7.39) 

and divided by (7.37), this leads to the following simplification of expression 
(7.36): 

c* f/c * rep 	rep = c* /c 	 (7.40) 

Because Atot  is always larger than A and in both cases the same length of 
the surface waters is used in the drainage density, the representative distance 
between the surface waters will be larger in the practical case than in the 
more accurate case. Because in both cases (6.2.20) is used, c*  is larger 
than c*, . Then, from (7.40) it is concluded that c* rep  is larger than c * rep . 
This overestimation of c* rep fl is larger, the larger A tot  is compared to A. 

Case 3: 
If c* < c and A ~! A 11 expression (7.34) reduces to: 

Atot/c* rep = A /c * 	 (7.41) 

which shows that in this case the representative feeding resistance is 
actually not related with c*  and therefore it is not related with the 
drainage density at all. So, the practical approach will lead to an inaccu-
rate feeding resistance and should not be used. 
From this analysis it is concluded, that the practical approach is valid if 
c* is not small compared to c * 

7.6 	Examples of the calculation of the feeding resistance for an 
arbitrary area 

As an example, the feeding resistance is determined for a small area in the 
northern part of the Netherlands (figure 7.9-a), which is bounded by a 
closed chain of surface waters. The sizes, shapes and entrance resistances of 
these surface waters are assumed to be about equal (see section 6.1), which 
means that the situation can be used straight-forwardly for the determina-
tion of the drainage density. 

Also in this complex situation, a model of analytic elements (figure 7.9-a) is 
used. In this model, the shapes of the surface waters are simulated in detail 
by numerous line-elements (subsection 3.3.2). The parameters (k0H0  and 
c1) in the model are taken in such a way that the boundaries of the sub-
areas become clear from the pattern of path lines (figure 7.9-a). The Figure 

198 



m 

7.9 Flow between arbitrary surface waters (a) schematized to 
determine the feeding resistance (b). 

boundaries of the schematized sub-areas (figure 7.9-b) are surface waters, 
path lines and water divides. (Actually, the place of these boundaries should 
preferably be determined based on measurements of heads and/or path 
lines.) Figure 7.9-b shows that in about 20% of the area, the flow accumu-
lates in axial-symmetric flow to the tips of the surface water or to the edges 
of corners between surface waters with an angle larger than 180°. 

The value of the representative feeding resistance based on the practical 
approach (so using the drainage density applied to the total area) is 
compared to the value of the accurate approach based on (7.36). The 
drainage density in this area is determined, by using half the length of the 
border surface waters and the full length of the surface waters within these 
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borders (see subsection 7.2). In the computation (table 7.1), c * comes from 
(6.2.20), L from (7.1) and (7.2), c 	frqm (6.2.20) using L", L" from (7.1) 
and (7.2) with J = 1, c* from (7.3) with R in KR determined by (7.30), 
c* rep  from (7.34) and c* rep u  from (7.35). 

The first example in table 7.1 represents the actual situation of figure 7.9. In 
the second example ko, k0 and H 0  are multiplied by 10 and c 1  by 100. In 
the third example, the length scale of the model is changed in such a way 
that kilometers become hectometers and in the fourth example the value of 
c0  is multiplied by 10. 

From the results presented in table 7.1, the following conclusions are drawn 
for these examples: 
- 	The practical approach leads to acceptable values of the representative 

feeding resistance in all examples, because c* 	c * 
- 	A change in the scale of the situation with a factor 10 (case 3) does 

change the value of the feeding resistance for parallel flow with a 
factor 10 and the feeding resistance for axial-symmetric flow with a 
factor 100. This example complies with L > 3X0  and R > 4ko, which 
leads to a linear relation between L aid c* (see comments to 
expression 6.2.20) and to a linear relation between Av  and c* (see 
expression (7.3) and the text near expression (7.19)). 

Table 7.1 Computation of the feeding resistance in four examples based on 
figure 7.9 (see text). 

Parameters example I example 2 example 3 example 4 

B(=2r)m 2 2 2 2 
CO 	d 1 1 1 10 
c 1 	d 10 1000 10 10 
H0 	m 5 50 5 5 
ko 	mId 3 30 3 3 
ko 	m/d .3 3 .3 .3 

ko 	m 20 1235 20 20 

A 	km 2  44 44 .44 44 
A 	km 2  11 11 .11 11 

km 20 20 2 20 
rad 6m 6m 67t 6ir 

R 	m 1080 1080 108 1080 
L 	m 2200 2200 220 2200 
L 	m 2750 2750 275 3750 

1K3  m 6.3 14 6.3 6.3 

C.  d 2926 2376 293 13400 

c d 893000 227000 8927 1943000 

Crep d 3655 2962 362 16750 

Crep d 3657 2786 366 16780 
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7.7 	Concluding remarks 

A theoretical basis is derived for the determination of the representative 
feeding resistance in areas with arbitrary situated surface waters. 

In the determination of the feeding resistance, areas with predominantly 
parallel flow should be distinguished from areas with predominantly axial-
symmetric flow. 

The feeding resistance for areas with predominantly parallel flow can often 
be based on the drainage density, which is the sum of the lengths of all 
surface waters in a certain area divided by the size of that area. 

The feeding resistance for areas with predominantly axial-symmetric flow is 
independent of the drainage density. 

The representative feeding resistance for an area consisting of sub-areas 
with both predominantly parallel and predominantly axial-symmetric flow is 
the area-weighted harmonic mean of the feeding resistances of all sub-
areas. 

The practical approach for the determination of the feeding resistance 
(taking the drainage density equal to the total length of all surface waters in 
the entire area divided by the size of that area and using only an expression 
for the feeding resistance for parallel flow) is allowed as long as the 
representative feeding resistance for all areas with predominantly axial-
symmetric flow is not small compared to the representative feeding resist-
ance for all areas with predominantly parallel flow or if the total size of all 
areas with axial-symmetric is negligible compared to the size of the entire 
area. 
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8. ON THE MODELING OF LARGE DOMAINS WITH 
ANALYTIC ELEMENTS 

8.0 Summary 

The modeling of large domains using the concept of geohydrologic 
features is introduced. The four main steps in modeling of large domains 
are presented, which are based on the coupling and refining of model 
parts. A model for national groundwater management should give 
comparable results everywhere, but is generally developed by different 
modelers. Therefore, an approach to build comparable models of different 
areas by different modelers is presented. 

8.1 	Introduction 

An analytic element is a mathematical function meant to model a specific 
geohydrologic feature (section 3.1). These features can be abstraction 
wells, polders, infiltration areas, parts of separating layers, parts of aquifers, 
surface waters, lakes, etc. Modeling with analytic elements is modeling in 
terms of geohydrologic features. In the modeling process, features have to 
be selected and the appropriate analytic elements have to be chosen. The 
application of the relation between geohydrologic features and analytic 
elements in this process of choosing is a continuation of the chapters 5, 6 
and 7. 

The modeling process is discussed with special attention to the modeling of 
large domains. This is a selection of the reports on NAGROM (De Lange, 
1991, De Lange and Van der Meij 1994), in which the applicability of the 
theory presented in this thesis has been demonstrated. 

A model such as NAGROM is large compared to the scale of the included 
geohydrologic features, which implies that it will be developed using sub-
models (sections 2.3 and 2.4). The different sub-models of NAGROM have 
been developed by different modellers during different periods. In order to 
derive one combined model for national water management, these sub-
models should be comparable. This will be elaborated in subsection 8.3.1. 
Therefore, an approach to develop comparable models of different areas 
by different modellers is presented, which is an elaboration of thoughts 
that appears to be useful in practice rather than a sound theory. This 
approach is based on geohydrologic features which closely agrees with 
analytic element modeling. 
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8.2 	The approach for modeling of large domains with analytic 
elements 

8.2.1 Modeling with analytic elements using the concept of 
geohydrologic features 

Modeling with analytic elements is modeling with geohydrologic features. In 
the modeling process, geohydrologic features are selected in accordance 
with their importance for the groundwater flow in the model area. An 
indicator for the presence and importance of several types of features is the 
change of the hydraulic gradient in vertical as well as in horizontal direction. 
For instance, differences in place in the hydraulic gradient may indicate 
differences in place in the transmissivity of an aquifer in horizontal direction 
or in the resistance of a separating layer in vertical direction. Also, the 
importance of the effect of a well, of the spatial difference in the 
groundwater recharge, or of a spatial difference in the surface water level 
are indicated by the distribution of the hydraulic gradient. The larger the 
change in place in the gradient the more important the feature will be. In 
the search for such a change, the scale of the model should be taken into 
account. A limitation of this indicator is that features are only recognized if 
they affect the groundwater flow in the present (measured) situation. 
Geohydrologic features that do not affect the flow at present are hard to 
determine and often are left out or modeled by using the experts guess. 

Geohydrologic features can be simulated using one analytic element per 
feature (e.g. a well-element representing an abstraction well) or using 
several analytic elements per feature (line-sinks simulating a river) or even 
one analytic element for several features (e.g. one inhomogeneity-element 
embracing several areas in which the transmissivity is different from in the 
rest of the aquifer). So, there is not a one to one relation between the 
number of geohydrologic features and the number of analytic elements 
(although it sometimes seems to turn out that way). 

Some types of geohydrologic features may be simulated by more than one 
type of analytic element. 

As a first example, a very low permeability boundary in an aquifer (e.g. 
a sheet-pile wall) can be modeled by using impermeable wall elements 
(subsection 3.3.5), by using leaky wall elements (subsection 3.3.5) or by 
using (nested) inhomogeneity elements (subsection 3.3.6). The leaky and 
the impermeable wall elements are actually developed for this feature, but 
the straight elements can not be connected (section 5.3). Therefore, the 
inhomogeneity elements have been used until the curvilinear elements 
became available in the cases of curved low permeable boundaries. 

As a second example, the anisotropic behaviour in a part of an aquifer 
can be simulated using line elements with a specified relatively high 
transmissivity (cracks) or with line elements with a specified resistance (leaky 
walls). As has been explained in subsections 5.2.5 and 5.2.6, the leaky wall 
elements are to be preferred to model anisotropic behaviour. 
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The third example illustrates that the choice of a type of analytic element 
may depend on the scale of moding (subsection 8.3.1). The interaction 
between surface water and groundwater can be simulated both by area-
sinks using the approach developed in chapters 6 and 7 and by line-sinks 
simulating each individual surface water. In areas with many surface waters, 
the area-sinks are used in large modeling areas while the line-sinks are 
used in small modeling areas. In other words, if a large amount of similar 
geohydrologic features is present in a domain of interest (the actual 
modeling area), these features are lumped but if the amount is small, the 
features are modeled individually. 

The choice of which analytic element should be used to model a certain 
geohydrologic feature is a typical aspect of modeling with analytic elements 
(section 5.1). This aspect also enables to change the elements in the model 
during the calibration process. After the experience of the author, the pos-
sibility to choose leads to relevant knowledge on the properties of geo-
hydrologic features. Also, the need rfollowing from the measured values) to 
change to an other analytic element may lead to the conclusion that the type 
of geohydrologic feature is different from the expected one. 

The distribution of analytic elements depends on the possible shapes of the 
elements as presented in chapters 3 and 4, on the distribution of the geo-
hydrologic features and on constraints to the combination of different 
types of elements as presented in section 5.3. The sizes of (the segments 
of) the elements are based on the scale of the model and on the desired 
accuracy for which several rules have been presented in section 5.2. 

The geohydrologic parameters used to specify a certain type of analytic 
element belong to the specific class of geohydrologic features for which 
that type of elements has been developed specifically (chapters 3 and 4). 
Often, an analytic element can also be used for a class of features that is 
different from the one it originally has been developed for e.g. curvilinear 
leaky walls to model anisotropic behaviour, as described in subsection 
5.2.5. As shown in that subsection, a relation between the geohydrologic 
parameters to specify these elements and the parameters that describe the 
geohydrologic feature has to be determined. 

So, the value of the parameters beloiging to analytic elements in a model 
are directly related to the properties of geohydrologic features. This is 
different from the data in a common model based on the finite element or 
finite difference technique that are often seen as mutually independent 
cell-values of the standard parameters (such as the transmissivity of the 
aquifers and the vertical resistances of the separating layers). 

8.2.2 The approach to model large domains 

The approach for the modeling of large domains has been developed for 
NAGROM (De Lange, 1991; De Lange and Van der Meij, 1994). Here, this 
approach is summarized by a discussion of the four main steps. These steps 
describe the modeling process that begins with the global modeling of a 
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large area around the domain of interest and ends up with the refinement 
of model parts in order to meet the desired scale of modeling (subsection 
8.3.2). The approach is based on the coupling and refining of models 
which is easy when modeling with analytic elements. 

Step 1; the boundary zone 
In a model of analytic elements, the domain of interest is separated 
from the rest of the infinite aquifer by a boundary zone. The analytic 
elements in this boundary zone generate the behaviour of the 
geohydrologic features in that area in a coarse way and as simple as 
possible. So, large elements are used. Only the main geohydrologic 
features are included such as large rivers (modeled by line-sinks) and 
infiltration areas (modeled by area-sinks). Other analytic elements 
such as inhomogeneities and leaky walls are hardly used and generally 
with (very) large segments. At the boundary of the domain of interest, 
the elements in the boundary zone should give a proper description of 
the outside world with respect to the present and forthcoming 
situations in the domain of interest. 

Step 2; the coarse model 
The domain of interest is covered by analytic elements that simulate 
the most important geohydrologic features when looking at the 
domain as a whole. The "coarse model covers the entire large 
domain and represents the main geohydrologic features. This model 
can be seen as the first try" of filling up the model area with 
elements. Only very large geohydrologic features are included by 
using relatively large elements. The result is a very global description 
of the groundwater flow. This model does not need to serve any 
purpose but being the boundary zone for the model parts to be 
refined in the next steps. All types of elements can be used but as 
simple as possible. 

Step 3; the refinement of model parts 
The domain of interest is split up in several parts, which are refined 
one after another. When a certain part is refined, the elements in the 
rest of the large domain are taken from the 'coarse" model. After the 
refinement of all parts, the entire large domain of interest can be 
covered by the combination of all elements at the refined level (scale 
of the model), which may or may not be the final scale of modeling. If 
the domain of interest is modeled on the final scale, the analytic 
elements are refined and adapted until the optimal accuracy is 
obtained (see examples in section 5.3). All types of elements are used 
as extensive as needed for this optimization. During the optimization, 
the amount of geohydrologic features included in the model remains 
the same. 

Step 4; repeated refinement in sub-parts 
Each model part of step 3 can be split up again in sub-parts. Each 
sub-part can be refined while taking the elements in the rest of the 
model part from the refinement of step 3. Outside that model part, 
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the elements of either step 3 or step 2 can be taken. As in step 3, after 
the refinement of the entire model part, all sub-parts can be combined to 
cover the entire model part at the repeated refined level. This step can 
be repeated over and over in all parts, sub-parts, sub-sub-parts etc. of 
the model. 
During this step, the amount of geohydrologic features is increased 
within the area of refinement. After the increase of the amount of 
geohydrologic features, the optimization with respect to the accuracy 
should be carried out (see step 3). So, the refinement of the elements to 
meet the desired modeling scale (so adding geohydrologic features) has 
an aim (adding information) different from the adaption of the elements 
for the optimization (adding accuracy). 

During the optimization of the elements and a refinement, the changes in a 
model may consist of the common adjustments of element parameters. But, 
they may also consist of changes of the shapes and types of individual 
analytic elements, which is uncommon in other techniques. For instance, 
elements may be split up in order to comply with the rules for the 
combination of elements presented in chapter 5. 

8.3 	An approach to build comparable models of different areas by 
different modellers 

8.3.1 On the relation between the accuracy and the comparability of 
models 

A model of a large domain for water management purposes is used to 
compare the effects of different measures that occur in different places 
(section 2.1). This implies that the computed effects e.g. in terms of 
differences in heads and/or fluxes should be comparable all over the model. 
In this, comparability means that similar changes imposed in different areas 
with similarly schematized geohydrologic systems of aquifers and aquitards 
should lead to similar effects computed by the model. Similar changes in 
different areas with differently schematized systems should lead to effects of 
which the differences in the results can be deduced from the differences in the 
geohydrologic schematization only. So, the translation of geohydrologic 
features in analytic elements should not lead to differences in computed 
results. 

Because NAGROM has been developed by different modellers d.uring 
different periods, an approach was needed to arrive at comparable models of 
different areas. Before this approach is presented (in the next subsection), 
some aspects of comparability in relation with accuracy of models are 
discussed. This discussion focuses on (stationary) models for quantitative 
effects (fluxes, heads) such as NAGROM rather than on models for qualitative 
effects (travel times, transport of pollutants). 

The comparability with respect to computed effects of the different parts of a 
groundwater model is often assumed to be related with the accuracy in terms 
of heads and fluxes of the model in those parts. In this, the accuracy is the 
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commonly used measure that describes how the computed values of the 
fluxes and heads compare to the measured values. Next, it will be illustrated 
that this accuracy in the case of a stationary model can not be used to arrive 
at comparable models, but that (where it is possible) the differences in the 
heads and fluxes in at least two different situations observed in reality should 
be compared to the differences in the same two situations simulated by the 
model. 

During the calibration of a stationary model, the distribution of a variable 
(head, flux) is compared with the spatial distribution of a representative time-
average of the measured values of that variable. In NAGROM, the measured 
head (steady state) is defined as the average head during the last weeks of 
the wet season which is approximately the month april (De Lange and Van 
der Meij 1994). 

The natural variation in time can be used to determine the range of 
discrepancies between computed and measured values that are allowed in 
the model due to the concept of steady flow. In each sub-model of 
NAGROM, the variations of the heads at different places throughout ten or 
more years have been used to estimate the allowed discrepancies between 
the measured and computed heads. For instance, the variations in time in the 
area of the NAGROM model of the eastern part of the Netherlands have led 
to the acceptance of discrepancies of several decimeters at some places and 
of several meters at other places. 

The natural variation in place may lead to the conclusion that certain 
computation results might be acceptable for a large domain model but not 
for a detailed model. For instance, the variation in place in the groundwater 
head in the ice-pushed ridge in the Veluwe-region in the central part of the 
Netherlands may be many meters within a distance of several hundreds of 
meters. Therefore, discrepancies between measured and computed heads are 
accepted in the order of meters in those areas in NAGROM (De Lange and 
Van der Meij, 1994), because the scale of the model is in the order of 
kilometers. If the area should be detailed further (say on a scale in the order 
of hectometres), this variation in the groundwater head should be simulated 
by including more and smaller geohydrologic features. 
In the flat valleys and polders in the NAG ROM model of the same Veluwe-
region, the variation in the groundwater head gradually changes with only a 
few decimeters per kilometre, which leads to the constraints to the deviations 
in the head following from the variation in time as discussed above. 

The results of a model for water management purposes are usually expressed 
in terms of differences between computed values in two situations. During a 
calibration the discrepancies between the measured and computed values are 
observed in a single situation. The comparability of the results in different 
parts a large model such as NAGROM is based on differences between the 
values in two situations. So, the discrepancies used in the calibration can not 
be used to express the internal model comparability. Only by using the 
differences in heads or fluxes between two situations such as the calibration 
and the verification situation, the computed differences can be used to 
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determine the comparability. However, it appeared that too few large areas 
can be found in the 

Netherlands in which two situations are known to check the comparability of 
NACROM. 

Therefore, an approach is developed for NAGROM to arrive at comparability 
based on the concept of geohydro'ogic features (subsection 8.3.2). 

8.3.2 An approach to build comparable models of different areas (based 
on their scale and using geohydrological features) 

In the former section it has been cc'ncluded, that the comparability should be 
interpreted in terms of comparable reactions to imposed stresses. The reaction 
of a model to imposed stresses is largely determined by the geohydrologic 
features included. This forms the basis of the approach to build comparable 
models of different areas by different modelers. It is important to realize that 
this approach is an elaboration of thoughts that appears to be useful in 
practice rather than a sound theory. It is described here in order to give an 
idea how different modelers arrived at the comparable models of NAGROM, 
but the basis of the theory needs to be elaborated further. 

In the modeling of large domains, the most important features are included 
first, because they determine the main part of the reactions to imposed 
stresses. During the calibration, geohydrologic features can be adapted and 
even be added in the model (subsection 8.2.2). The more features will be 
included, the less important the last ones will be when looking at the original 
scale of modeling. At a certain point in the modeling process, the addition of 
more features may cause that part of the model to become so detailed that it 
actually has changed to a different scale. When the refinements are not 
carried out all over the model, the modeling scale may vary strongly from one 
part to another and the differences in the sizes of the elements within one 
model can become extreme. In the early stage of development of NAGROM, 
this has occurred several times in order to arrive at equal accuracy in the 
measured heads and fluxes in the caLbration situation. The models appeared 
to be not internally comparable. This problem has been tackled using the 
following approach, which is slightly different from the approach presented in 
De Lange (1991). 

The geohydrologic features are selected using their size in relation to the size 
of the domain of interest. The length of a line-shaped feature (e.g. a canal) to 
be included should be at least 1/10 o the square root of the size of the 
domain of interest and the size of an area-shaped feature (e.g. a polder) 
should be at least 1/100 of the size of the domain of interest. In practice, a 
number between 20 and 50 features is used depending on the number of 
aquifers and the complexity of the area features, with an average of about 30 
features. 

For the modeling approach used for NAGROM, a relation between the scale 
and the size of a domain of interest has been defined (De Lange, 1991). 
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In table 8.1 the most important part for modeling of large domains is 
presented. This table expresses: LOCAL is thinking in hectares, REGIONAL 
in square kilometers, FLUVIAL in areas of (several) countries and MONDIAL 
concerns the whole earth. In general, the word 'scale' means 'standard'. 
Therefore, a scale can also be related with the size of an area. 

Table 8.1 Relation between scale and domain of interest 

name of scale size of domain of interest [km 2 ] 
prefix sub- - supra- 

local 10 2  101 100 
regional 101 102 10 
fluvial 104 10 106 
mondial 107 108 10 

This naming of scales may replace the existing habit to name models after 
the scale of the topographic map they are based on (say 1:100.000). The 
scales of topographic maps can be related to the scale names presented in 
table 8.1 by considering that the size of the area covered by one sheet of a 
map has the same order of magnitude as the domain of interest of the 
model. Sheets of maps as used in the Netherlands generally cover 0.5 m >< 
0.7 m = 0.35 m2 . On a scale of 1:100,000 this 0.35 m 2  represents an area 
of 3,500 km 2  and is in the range of a supra-regional scale. The same sheet 
on a scale of 1:25,000 then covers 220 km 2 , which is in the regional scale 
and a sheet on the scale of 1:10,000 covers 35 km 2 , which is in the sub-
regional scale. Such a sheet on the scale of 1:1000 covers .35 km 2  and is 
local scale. So, these names agree with common practice. 

In the practice of NAGROM, the modeling of the domain of interest is 
started at supra-regional scale, which means that about 30 geohydrologic 
features are included in domains of interest with sizes of about 1000 to 
10,000 km2. In the second step, the modeling is carried out at regional 
scale, using the supra-regional model as a framework. The area of the 
supra-regional model is split up in 5 to 10 regional models (areas of interest) 
each with a size about 100 to 1000 km 2 . In each of these areas of interest 
again about 30 features are included. Once all the regional models have 
been built, the entire supra-regional area can be covered by elements on 
supra-regional scale as well as by the combination of all regional elements. 
The latter step can be repeated: in the third modeling step, the regional 
models might be split up again in 5 to 10 sub-regional models with a 
domain of interest with a size of about 10 to 100 km 2 . 

So in the approach presented here, the geohydrologic features in the 
domain of interest are determined depending on the scale of the model. 
These geohydrologic features are simulated by analytic elements in such a 
way that the accuracy is optimum. This means that in different areas the 
response to stresses of the geohydrologic features should be comparable 
and the computation results should not differ due to the applied analytic 
elements. Doing this, the computed changes in heads or fluxes due to 
imposed stresses will be comparable in different areas. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

9.1 	Conclusions 

The modeling approach developed for the NAtional GROundwater Model 
(NAGROM) is unique because it s based on coupling and refining of 
models. This approach is mainly due to the application of the analytic 
element modeling technique. 

In a model of analytic elements boundary conditions are defined on 
outside boundaries as well as on inside boundaries. The latter is uncommon 
in modeling with other techniques. 

The development of proper combnations of analytic elements desires a 
thorough understanding of the analytic elements used and of their 
interaction. 

Analytic elements generating a higher transmissivity inside than outside 
(inhomogeneity, crack, drain) are relatively easy to use in models. However, 
their effect on the groundwater flow is not only related to their relative 
transmissivities and to their sizes but also to the flow situation generated 
by the rest of the model. Because of this, a crack or drain can hardly be 
used to model anisotropic behaviour. On the contrary, analytic elements 
generating a lower transmissivity (or hydraulic conductivity) inside than 
outside (inhomogeneity, leaky wall, impermeable wall) are relatively 
difficult to use in models. Their effect on the groundwater flow is only 
related to that relative low transmissivity and to their sizes and not to the 
flow situation. Therefore, the leaky wall can well be used to model 
anisotropic behaviour. 

The effect of a leaky wall on the goundwater flow can be characterized by 
a simple parameter. 

The accuracy of the flux and the head generated by an area-sink can be 
often simply related to the size of that element. 

Modeling with analytic elements is complex compared to modeling with 
classical (finite element or finite difference) techniques and should be 
carried out following the rules for modeling derived in chapter 5. These 
rules mainly concern the strength distribution generated by elements and 
the response of other elements to this. In general, overlapping elements 
should be avoided. 

The interaction between surface water systems and the groundwater in 
regional aquifers are included in NAGROM by lumping the effects of the 
individual surface waters in an area-representative Cauchy boundary 
condition. It is shown in this thesis, that in a Cauchy boundary condition in 
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which the feeding resistance is used, the modified surface water level 
should be applied also. New and simple expresssions for both the feeding 
resistance and the modified surface water level are presented in this thesis. 

The feeding resistance and the drainage resistance should not be based on 
conceptual models in which the flux across the separating layer below the 
top aquifer is constant. 

The feeding resistance can not be derived by adding the vertical resistance 
of a separating layer to the drainage resistance, because then the flux 
across the separating layer below the top aquifer is assumed to be 
constant. 

The use of multi-aquifer models for the computation of the feeding 
resistance as well as the drainage resistance is limited to conceptual models 
in which the conditions at the boundary in the lower aquifer allow for a 
net flow between the groundwater in the top aquifer (included in the 
Cauchy boundary condition) and the groundwater in the regional aquifer 
(the upper aquifer of the actual model). 

The feeding resistance for the situation in which the surface waters cut 
through the separating layer can often be determined by a simple 
expression. 

The feeding resistance in an area with arbitrary situated surface waters can 
often be derived by using the drainage density in the determination of the 
representative distance between the surface waters in that area. The 
derivation of this representative distance has been based on the new and 
simple expression for the feeding resistance presented in this thesis. 

The following conclusions are directly related to this thesis, but not based 
on presented theory or developments. 

The computation of heads, velocities and fluxes using analytic expressions 
provides exact and consistent values at any point in a model. In this the 
effects of density variation can be included analytically too. Although the 
AEM is not developed far enough yet to model transport of pollutants 
including dispersion, it provides a base for clean computation without 
numerical dispersion. 

The two-dimensional mathematics of the AEM has properly been extended 
(by Strack) for use in semi-three-dimensional computation of groundwater 
flow. 

The use of the discharge potential has opened new ways to model several 
aspects of groundwater flow (e.g. density-driven flow) by analytic 
expressions. 

The growth of new type of analytic elements and new applications of the 
discharge potential appears to be almost unlimited. 
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9.2 	Recommendations 

The approach for scale-dependent modeling as discussed in chapter 8, 
should be developed further. As yet, it has led to the comparability of 
models developed by different modelers. 

In the coming years, the theory for several aspects in computations 
concerning groundwater quality, such as transport of pollutants, should be 
implemented in the analytic element technique. 
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SUMMARY 

At the end of the 1980's, modeling of large domains was quite cumber-
some using the classical (finite element and finite difference) techniques. By 
the appearance of Strack's analy:ic element technique, the coupling of 
models became easy to perform. The necessity to have the disposal of a 
groundwater model covering the entire country of the Netherlands at 
Rijkswaterstaat initiated the development of NAGROM, which stands for 
NAtional GROundater Model. 

This thesis describes the basis of the modeling approach developed for 
NAGROM. After the first two introductory chapters, in the first main part 
(chapters 3, 4 and 5), rules are developed for the application of the 
analytic element technique as developed by Strack. In the second main 
part (chapters 6 and 7), the interaction between a system of surface waters 
and the groundwater in the regicnal aquifer in the same area are described 
by a simple formula, of which the general applicability is shown. In the last 
main part (chapter 8), an approach is presented to arrive at the point that 
the different models of NAGROM give comparable results. 

NAGROM is based on the analytc element technique of Strack (University 
of Minnesota, U.S.A.). Analytic elements are solutions of the Laplace (and 
in special cases of the Poisson) differential equation. The elements are 
combined using the principle of superposition. Different elements impose 
different boundary conditions. Analytic elements can be point-, line-, or 
area-elements. Point-elements are used to model wells. Line-elements may 
simulate for instance brooks, rivers, sheet-pile walls, cracks and by using 
line-polygons, inhomogeneities in the aquifer properties can be included. 
Area-elements are used to simulate leakage through layers as it occurs 
below lakes and polders and through layers separating aquifers. Also, 
infiltration can be simulated by area-elements. 

Strack developed a solution technique, which enables to compute the 
unknown strengths of elements in models with more than one aquifer. The 
analytic element technique can be used to model complex multi-aquifer 
models including anisotropy (using an approach described in this thesis), 
three-dimensional density-driven flow, horizontally-layered aquifers and 
partially penetrating wells (using an approach described in this thesis). In 
each arbitrary volume in a model of analytic elements the water balance is 
exact and at any point the head and its derivative comply exactly with the 
velocity. So, numerical dispersion is absent in the derivation of the velocity. 
At this moment (1995), the analy:ic element technique used in NAGROM 
is limited to stationary flow and excludes diffusion, dispersion and chemical 
reactions of solvents in the groundwater. 

In modeling with analytic elements, it is important to choose the right type 
of analytic element to include the geohydrologic properties (transmissivity, 
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resistance, anisotropy, etc.) as well as to combine the elements correctly. 
The more complex the model, the more interactions appear in the model 
that may generate so-called physical errors. Physical errors are errors 
caused by the erroneous use or errdneous combination of analytic 
elements. These errors can be prevented by applying the modeling rules 
developed in this thesis. Most of these modeling rules have been found by 
analyzing the combination of each two types of elements. The most 
important rules are based on the proper use of the strength distribution 
belonging to each type of analytic element. 

A well-known example of a physical error is the following. The strength of 
an element depends on the transmissivity at the point where that strength 
is computed or specified. If the element covers partly an area with a 
different transmissivity, this strength is wrong either inside or outside in 
that area. 

From the stepwise construction of relatively complex models it is 
concluded, that analytic element models should be built from large to small 
and from coarse to detailed. This means that the distribution of elements is 
adapted during the modeling process. This is fundamentally different from 
modeling with classical (finite difference or finite element) techniques. The 
refinement of (a part of) an analytic element model is repeated until the 
desired accuracy is derived. From the examples presented in this thesis and 
from the experience of the author, it is concluded that physical errors are 
not present in a model if they do not show up explicitly in the results. 

In the Netherlands, areas with many surface waters have been modeled 
since long by using methods in which the effects of the individual surface 
waters on the groundwater flow in the underlying regional aquifer are 
lumped in a simple area-representative boundary condition. In this, a 
Cauchy boundary condition is used, which describes a linear relation 
between the flux through the boundary layer and the potential at the inner 
side of that boundary layer. In the Cauchy boundary condition often either 
the so-called drainage resistance or the feeding resistance in combination 
with a representative value of the potential at the outer side of the 
boundary layer are used. The drainage resistance describes the situation in 
which the surface waters are in direct contact with the upper aquifer in the 
model. The feeding resistance is used in the situation with the surface 
waters in a top aquifer which is separated by a resistance layer from the 
upper aquifer in the model. The choice between both resistances depends 
on the situation to be modeled. 

In this thesis, a new and simple formula for the feeding resistance is 
presented. Comparisons have been carried out concerning the differences 
between formulas for one-dimensional and two-dimensional flow and 
concerning the effects of different boundary conditions at the bottom of 
the top aquifer. In the comparison of these latter boundary conditions, a 
solution for a two-aquifer model is used. From these comparisons, it is 
concluded that the new and simple formula appears to be generally 
applicable. 
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Apart from this, a new analytic solution for the feeding resistance in the 
situation with the surface waters cutting through the separating layer at 
the bottom of the top aquifer appears to compare well with the length-
weighted harmonic mean of the feeding resistance (following from the 
simple formula applied between the surface waters) and the resistance of 
the bottom of the surface waters. So, the latter can often be used. 

The representative distance between the surface waters is important for 
the value of both the drainage resistance and the feeding resistance. It is 
known by several hydrologists in the Netherlands that this representative 
distance can be determined using the so-called drainage density, which is 
the sum of the length of all surface waters in a domain divided by the area 
of that domain. An explanation for this has never been presented before. 
By using the new formula for the feeding resistance, it is shown that this 
approach is acceptable in the situations where the feeding resistance is 
linearly related with the distance between the surface waters. In areas with 
many open ends of surface waters, the application of this approach may 
lead to a significant error in the value of the representative feeding 
resistance and the approach presented in this thesis should be used to 
determine the overall feeding resistance in areas with arbitrary situated 
surface waters. 

The knowledge on modeling of large domains with analytic elements 
described above has been used during the development of NAGROM and 
is mentioned in chapter 8. A complete description is presented in various 
documents (De Lange, 1991; De Lange and Van der Meij 1994) and is not 
described in this thesis. 

The results of NAGROM should be comparable all over the country. In 
order to meet this constraint, the models of NAG ROM have been 
developed on a specified scale. In chapter 8, the scale of a model is defined 
by the size of its domain of interest. In each defined domain of interest, a 
standard amount of geohydrologic features (units in which the geohydrologic 
properties are constant) is defined. Doing this, the degree of detail varies 
with the scale, but is equal in domains modeled on the same scale. 
Geohydrologic features can be well related with analytic elements. This 
approach appeared to be useful during the development of NAGROM. 
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SAM EN VATTING 

Het modelleren van grote gebieden met een redelijke mate van detail was 
eind jaren tachtig vrijwel ondoenlijk met de toen bestaande modeltechnieken 
(eindige elementen techniek en eindige differentie techniek). Tot aan het 
verschijnen van Stracks analytische elementen methode, was er geen model-
leer techniek waarmee bestaande modellen rechtstreeks en eenvoudig aan 
elkaar gekoppeld konden worden. De noodzaak voor Rijkswaterstaat om te 
kunnen beschikken over een landsdekkend grondwater model voor Iandelijke 
beleidsanalyse heeft ertoe geleid dat een nieuwe ontwikkeiing in gang gezet 
werd, die uiteindelijk heeft geleid tot NAGROM (NAtionaal GROndwater 
Model). 

In dit proefschrift wordt de modelleer aanpak van NAGROM theoretisch 
onderbouwd. Na de twee inleidende hoofdstukken wordt in het eerste 
hoofdgedeelte (hoofdstukken 3, 4 en 5) het modelleren met analytische 
elementen, zoals deze zijn ontwikkeld door Strack, onderbouwd met 
regels. In het tweede hoofdgedeelte (hoofdstukken 6 en 7) wordt de 
interactie tussen het stelsel van oppervlaktewateren in een gebied en het 
grondwater in het regionale watervoerend pakket eronder beschreven met 
een eenvoudige formule waarvan de algemene toepasbaarheid op de 
belangrijkste punten onderbouwd wordt. In het laatste hoofdgedeelte 
(hoofdstuk 8) wordt een benadering gepresenteerd om de verschillende 
NAGROM deelmodellen vergelijkbare resultaten te laten produceren. 

NAG ROM is gebaseerd op de analytische elementen technique van Strack 
(Universiteit van Minnesota, VS.). Analytische elementen zijn oplossingen 
van de Laplace (en in bijzondere gevallen van de Poisson) differentiaal-
vergelijking. Op basis van het superpositie beginsel worden de elementen 
gecombineerd. Met verschillende typen elementen kunnen verschillende 
randvoorwaarden worden opgelega. Analytische elementen kun nen punt-, 
lijn- of oppervlakte-elementen zijn. Punt-elementen worden gebruikt om 
onttrekkingen te modelleren. Met Iijn-elementen kunnen beken, rivieren, 
damwanden, zeer sterk doorlatende Ianggerekte gebieden (karstverschijn-
selen) worden gemodelleerd en met polygonen kunnen inhomogeniteiten 
in de eigenschappen van het watervoerend pakket worden gemodelleerd. 
Met oppervlakte-elementen wordt lek van of naar het watervoerend 
pakket gesimuleerd, zoals dat optreedt onder polder- of infiltratiegebieden 
en bij scheidende lagen. 

Door Strack is een oplossingstechniek ontwikkeld waardoor onbekende 
sterkten van elementen kunnen worden bepaald in modellen met meerdere 
watervoerend pakketten. Met de analytische elementen techniek kunnen 
complexe meerlagen modellen worden gebouwd met horizontale anisotropie 
(met behulp van een benadering beschreven in dit proefschrift), drie-dimen-
sionale dichtheidstroming, gelaagdheid birinen watervoerende pakketten en 
onvolkomen putten en waterlopen (met behulp van de benadering 
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beschreven in dit proefschrift). De waterbalans in elk willekeurig volume in 
een model is exact en numerieke dispersie in het bepalen van de snelheids-
verdeling treedt niet op vanwege het gebruik van analytische formulerin-
gen. Vooralsnog (1995) is de voor NAGROM gebruikte techniek beperkt 
tot stationaire stroming zonder diffusie, dispersie of chemische omzettingen 
in het transport van opgeloste stoffen. 

Bij het modelleren met analytische elementen is het belangrijk om de juiste 
elementen voor de op te nemen geohydrologische eigenschappen 
(doorlaatvermogen, weerstand, anisotropie, etc.) te kiezen en om de 
elementen op correcte wijze samen te laten werken. Hoe complexer het 
model des te meer interacties tussen elementen een rol gaan spelen die, bij 
verkeerd gebruik, kunnen leiden tot zogenaamde fysische modelleerfouten 
in de resultaten. Dit zijn fouten die ontstaan door het onjuist gebruik of 
onjuiste combinatie van analytische elementen. Dit kan worden voorkomen 
door het opvolgen van regels voor het combineren van elementen die zijn 
afgeleid in dit proefschrift. De meeste van deze regels zijn gebaseerd op 
analyse van de combinaties van twee analytische elementen van 
verschillend of gelijk type. De belangrijkste regels voor het modelleren 
hebben betrekking op het juiste gebruik van de sterkteverdelingen, die zijn 
gedefinieerd per type element. 

Een bekend voorbeeld hiervan is het feit dat een sterkte berekend voor een 
element afhangt van het doorlaatvermogen ter plaatse van het controlepunt 
(het punt waar de sterkte bepaald wordt aan de hand van de opgelegde 
randvoorwaarde) en dus tot onjuiste resultaten leidt als het element een 
relevant deel van een gebied met een ander doorlaatvermogen bedekt. 

Aan de hand van een stapsgewijze opbouw naar meer complexe modellen 
wordt geconcludeerd dat het, bij gebruik van de analytische elementen 
methode, voor de hand ligt om van groot naar klein en van grof naar fijn 
te modelleren. Dit betekent dat tijdens het modelleerproces de verdeling 
van de elementen wordt aangepast in de opeenvolgende stappen. Dit is 
een fundamenteel verschil met het modelleren met klassieke (eindige 
elementen, eindige differentie) technieken. Het verfijnen wordt in principe 
zo vaak herhaald als nodig is om de gewenste nauwkeurigheid te 
verkrijgen bij de schaal waarin gemodelleerd wordt. De gepresenteerde 
voorbeelden en de ervaring van de schrijver laten de conclusie toe dat 
indien geen duidelijke tekenen van fysische fouten worden geconstateerd, 
deze ook niet in het model voorkomen. 

Bij het modelleren van gebieden waarin vele oppervlaktewateren 
voorkomen, wordt in Nederland reeds gedurende decennia gebruik gemaakt 
van methoden om de individuele effecten van die oppervlaktewateren op de 
grondwaterstroming samen te trekken in een eenvoudige gebiedsgemiddelde 
randvoorwaarde. In de daarbij gebruikte Cauchy randvoorwaarde - die een 
lineaire relatie tussen de flux door een rand en de potentiaal net binnen die 
rand beschrijft - wordt meestal de zogeheten drainageweerstand danwel 
de zogeheten voedingsweerstand gebruikt in combinatie met een 
representatieve waarde van de potentiaal net buiten die rand (meestal het 
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gemiddelde oppervlaktewater peil). De drainageweerstand beschrijft de 
situatie waarin de oppervlaktewateren direct liggen in het bovenste 
watervoerend pakket van het model. De voedingsweerstand beschrijft de 
situatie met oppervlaktewateren liggend in een toplaag boven het boven-
ste watervoerende pakket in het model, welke gescheiden zijn door een 
weerstandbiedende laag. De modelleur kan kiezen uit beide weerstand-
typen aan de hand van het bijbehorende conceptuele model. 

In dit proefschrift wordt een eenvoudige nieuwe formule gepresenteerd 
voor de voedingsweerstand. Uit vergelijkingen betreffende ondermeer de 
verschillen tussen een twee-dimensionate en een een-dimensionale 
benadering en de effecten van de voorwaarde op de rand tussen de 
toplaag en het bovenste watervoerende pakket van het model btijkt de 
nieuwe formule zeer goede eigenschappen te bezitten. Bij deze laatste 
vergelijking wordt gebruik gemaakt van een nieuwe analytische oplossing 
van een tweelagenprobleem. 
Daarnaast wordt uit een vergelijking met een analytische oplossing 
geconcludeerd dat in het geval waarin de oppervlaktewateren insnijden 
door de weerstandbiedende laag onder de toplaag, het lengte-gewogen 
harmonische gemiddelde van de voedingsweerstand en de bodemweerstand 
van het oppervlaktewater een voldoend representatieve waarde voor de 
weerstand in de Cauchy randvoorwaarde geven. 

Bij het bepalen van de waarde van zowel de drainageweerstand als de 
voedingsweerstand is de representatieve afstand tussen de oppervlakte-
wateren een belangrijke parameter. Het is bij sommige hydrologen bekend 
dat deze representatieve afstand kan worden gebaseerd op de zogeheten 
drainagedichtheid, de som van de lengten van alle oppervlaktewateren (of 
andere drainage middelen) binnen een bepaald gebied gedeeld door de 
oppervlakte van dat gebied. Een onderbouwing voor deze aanpak is echter 
nooit gegeven. Door gebruik te maken van de nieuwe formule voor de 
voedingsweerstand wordt aangetoond dat deze aanpak acceptabel is in 
gevallen waarin de voedingsweerstand een lineaire relatie heeft met de 
afstand tussen de oppervlaktewateren. In gebieden met veel open einden 
van oppervlaktewateren kan het gebruik van de drainagedichtheid tot 
significant afwijkende waarden voor de voedingsweerstand Ieiden en kan 
gebruik worden gemaakt van de in dit proefschrift aangegeven methode 
voor de berekening van de voedingsweerstand in gevallen met willekeurig 
gelegen oppervlaktewateren. 

De bovenbeschreven kennis over het modelleren van grote gebieden met 
analytische elementen is bij het bouwen van NAGROM in praktijk gebracht 
en is aangestipt in hoofdstuk 8. De volledige beschrijving van NAGROM 
valt buiten dit proefschrift en is verwoord in diverse documenten (De 
Lange, 1991; De Lange en Van der Meij, 1994). 

De resultaten van NAGROM moeten over het hele land vergelijkbaar zijn. 
Om dit te verkrijgen worden de deelmodellen van NAGROM op een van 
te voren vastgestelde schaal gebouwd. In hoofdstuk 8 is aan zon schaal 
een modelgebied met gedefinieerde grootte (kortweg schaal-gebieds- 
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grootte) gekoppeld. Door een vaste hoevee!heid grondwater-eenheden 
(eenheden met gelijke eigenschappen ten aanzien van grondwater 
stroming) per schaalgebiedsgrootte te nemen varieert de mate van detail 
per schaal, maar verschillende deelmodellen op een en dezelfde schaal 
bezitten dezelfde mate van detail. De verschillende typen grondwater 
eenheden kunnen goed gerelateerd worden aan de verschillende typen van 
analytische elementen. Het definiëren van de mate van detail, gebaseerd 
op grondwater-eenheden per gebiedsgrootte afhankelijk van de schaal, is 
bij NAGROM een bruikbare werkwijze gebleken voor het modelleren met 
analytische elementen. 
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LIST OF SYMBOLS 

symbol defined meaning 
in chapter 

a 6 anisotropy factor [-I 
ac  4 constant [-] 
am  4 constant m = 1 ,M 
a 5 distance between the line of observation and 

the well [L] 
A 7 size of area 	[[2 ] 

Ak 7 size of sub-area k [[2] 

At01 7 total observed area [[ 2 ] 

A, 7 sum of all rectangular sub-areas with parallel 
flow [2] 

A 7 sum of all triangular sub-areas with parallel 
flow [L2 ] 

A i  7 size of area between surface waters 
i and i + 1 [L2 ] 

A ll  7 total area with parallel flow [[ 2 ] 

Av  7 total area with radial flow [L 2 ] 

b,bm 3 base level of layer j resp. m in a stratified 
aquife 	[L] 

B 6 width of the surface water [L] 
B cr  5 width of the crack [U 
Btr  5 width of the through at upper side of the 

aquifer [L] 
B 1  5 width of strip with constant strength [L] 

c 5 resistance of separating top layer [T] 
c 5 specific resistance to groundwater flow [T] 
c 5 specific resistance to groundwater flow inside 

strip dx under trough [T] 
c * 6 feeding resistance [T] 
cB+ L 6 combination of feeding resistance and entrance 

resistance [T] 
c* rep  7 representative feeding resistance over an area 

with both radial and parallel flow [T] 
C. 7 representative feeding resistance for parallel 

flow in a corner between a water divide an a 
surface water [T] 

c *,, 7 representative feeding resistance over an area 
with parallel flow [T] 

c* 7 representative feeding resistance over total area 
with radial flow [T] 
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symbol 

C V R 

c * 

* 

C* V  

Cd rai n  

CIkw  

Crad 
Ct r  

Co 

coo  
co o 

Co * 

c i  

Cl 0  
Cl  

c i  
C2 

C 
Cc  
C i  
C u  

defined 
in chapter 

7 

7 

7 

7 

6 
5 

6 
5 

6 
6 
6 
6 

6 

6 
6 

6 
3 

6 
3 
5 
3 

E 	5 

F(n,z) 	6 
F(ö,c,H,r) 5 

h 	3 

H 	3 
H fl h 	 5 

meaning 

feeding resistance for radial flow inside the 
circular area with radius R [T] 
representative feeding resistance for the 
rectangular sub-areas [T] 
representative feeding resistance for the 
triangular sub-areas [T] 
feeding resistance for radial flow inside a 
triangular area [T] 
drainage resistance [T] 
resistance of the leaky wall against horizontal 
flow [T] 
radial resistance [T/Li 
total resistance generated by trough in the 
aquifer [T] 
resistance of bottom layer of surface water [T] 
resistance parameter with c0  [T] 
resistance parameter with c0  [L] 
resistance between surface water and boundary 
at x = 0 or at x = L in the upper aquifer [T] 
resistance of separating layer between upper, 
local aquifer and regional aquifer [T] 
resistance parameter with c 1  [T] 
resistance of the separating layer combined with 
the vertical resistance in the upper aquifer [T] 
resistance parameter with c 1  [L] 
resistance of separating layer between two 
regional aquifers [T] 
parameter in the derivation [1/L1 
integration constant for confined situation [L 3/Ti 
integration constants, i = 1,4 {[-] or [Li} 
integration constant for unconfined situation 
[L3/Ti 

distance between top of aquifer and the 
reference level [L] 
depth of interface compared to the reference 
level [Li 

relative difference between fluxes [-i 

function [-I 
function given in (CHO-TNO, 1964, p  82) 

thickness over which the groundwater flow 
occurs [L] 
thickness of confined aquifer [L] 
thickness of aquifer inside inhomogeneity [Li 

3 

3 
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symbol defined meaning 
in chapter 

H 3 thickness of layer j in a stratified aquifer [L] 
Ht r  5 maximum thickness of the through [L] 
H0  6 thickness of the upper, local aquifer [L] 
H0 * 6 thickness of phreatic aquifer directly contributing 

to the surface water [L] 
H 1  6 thickness of the lower, regional aquifer [L] 
Hi a  6 thickness of the lower, regional aquifer above 

separating flow line [L] 
H(x) 5 thickness under the trough at x [L] 

i 4 unit vector in vertical direction [-] 
lKi 7 parameter in derivation including modified- 

Bessel functions, i = 1,23 [-] 

k 3 hydraulic conductivity [LIT] 
kcr  5 hydraulic conductivity of the crack [L 2ITI 
khigh 5 highest hydraulic conductivity in anisotropic 

aquifer [L/TI 
kj fl h 5 hydraulic conductivity inside the inhomogeneity 

[LIT] 
kj k m  3 hydraulic conductivity of layer j resp. m in a 

stratified aquifer [LITI 
k low  5 lowest hydraulic conductivity in anisotropic 

aquifer [LITI 
kX (pf) 4 hydraulic conductivity in terms of pf in x- 

direction [LITI 
k(pf) 4 hydraulic conductivity in terms of pf in y- 

direction [L/TI 
k(p) 4 hydraulic conductivity in terms of pf  in z- 

direction [LIT] 
k0 6 hydraulic conductivity in horizontal direction in 

the upper aquifer [LITI 
k0 6 hydraulic conductivity in vertical direction in the 

upper aquifer [LITI 
k1 6 hydraulic conductivity in horizontal direction in 

the lower aquifer [LITI 
KR  6 parameter including modified Bessel function [-I 
K0  4 modified Bessel functions of the second kind 

and of order zero 
K 1  4 modified Bessel functions of the second kind 

and of order one 

11, 7 length of surface waters at the border of a 
rectangular area [L] 

7 length of surface waters at the border of a 
triangular area [L] 

l 7 length of the surface water i [L] 
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symbol defined meaning 
in chapter 

'tot 7 total length of surface waters in the observed 
area [L] 

L 6 distance between the borders of the parallel 
surface waters [L] 

L 7 distance between the surface water and the 
water divide [L] 

L 7 L determined using the practical approach in 
sub-section 6.4.5 [L] 

L 7 distance between parallel surface waters in a 
rectangular area [L] 

La 7 distance between parallel surface waters in a 
triangular area [L] 

L(x) 7 distance between the surface water and the 
water divide at x [L] 

L i  7 distance between surface water i and surface 
water i + 1 [L] 

Lk 7 distance between surface water and waterdivide 
[L] 

Lkiow  5 length in direction of lowest hydraulic conductivity 
over which leaky wall represents anisotropic 
behaviour [L] 

Lcr  5 length of the crack [L] 
Llkw 5 length of the leaky wall [L] 
L re p 7 representative distance between the surface 

waters [L] 

M 7 drainage density [1/LI 

p 3 surface water level [L] 
p 6 constant including surface water level and 

resistances 	[L] 
6 modified surface water level [L] 

1 m  3 observation point [-I 
Pn 6 natural recharge [L/TI 

q x  4 specific discharge in x direction [L/T] 
cl y  4 specific discharge in y direction [L/T] 
q z  4 specific discharge in z direction [L/T] 
q0 (0) 6 flux at x = 0 [L/TI 
ci1(A) 6 flux per unit thickness through vertical section 

at A [L/TI 
q 1 (L) 6 flux per unit thickness through vertical section 

at L [L/TI 
Qcr,m 5 flux in the middle of the crack [L 3/TI 
Qcr(Qmx) 5 maximum flux through the crack at rQ mx  [L3 /TI 
0 3 line-sink discharge 	[L3/TI 
Qn 5 normal flux across line [L 3/L.T] 
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symbol defined meaning 
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0R 7 volume per unit time across the circular boundary 
at radius R (L3/T) 

3 abstraction rate (strength) of the well [L 3 /T1 
QWj 5 the abstraction rate of the well affected by 

= 0,12,3,4 crack(s) [L 3 /T] 
5 the abstraction rate of the well affected by an 

inhomogeneity [L3 /T] 
3 discharge vector per unit width in x- respectively 

y- direction [L 3 /L.T] 
5 flux component in x-direction per unit width (in 

y-direction) inside inhomogeneity [L 3/L.Ti 
5 flux component in x-direction per unit width (in 

y-direction) outside inhomogeneity [L3 /L.T1 
Q(0) 5 flux over entire thickness at x = 0 per unit width 

perpendicular to the section [L 3 /L.T] 
Q(romx) 5 flux through circle at r = rQmx  outside the crack 

[L3 /T] 
Q(B 1 ) 5 flux over entire thickness at x = B 1  per unit 

width [L3/L.T] 

r 3 distance between well and observation point [L] 
r lfl h 5 radius of circular inhomogeneity [L] 
rIkW 5 distance from well to concentric circular leaky 

wall [LI. 
rQmx  5 distance from the well to the point of maximum 

flux in the crack [L] 
rrad 6 specific radial resistance [TILl 
rref 3 distance from the well to the reference point [L] 
rw  3 well radius [L] 
r 1  5 distance from well to closest tip of the crack [LI 

5 distance from well to farthest tip of the crack [L] 
R 7 radius of circular area [L] 
R i  7 parameters in derivation i = 0,1,2,3,4,5 [L2 IT1, 

[-], [L2 IT] [TIL] [T] ,[T] 

s 6 flux through separating layer [LIT1 
SLav 6 average over L of flux through the separating 

layer [L/Ti 

5Bav 6 average flux through bottom of surface water 
with width B12 [LITI 

SBaV" 6 average flux through bottom of surface water 
over width B14 [LIT] 

5Rav 6 average flux through the separating layer over 
circular area with radius R [LIT1 

6 flux through bottom layer of surface water [LITI 
s2  6 flux through separating layer below surface 

water [LITI 
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S 6 volume per unit time through the separating 
layer over the area of concern [L3/T] 

S 3 strength of element j [L 3 /T] 
SEmi  3 shape function of element j [-] 
S(0,13 1 ) 5 the total flux through the separating layer 

between x = 0 and x = B 1  per unit width 
perpendicular to the section EL3 /L.T] 

T 5 transmissivity of the aquifer EL2/T] 
Tan  5 equivalent transmissivity in an annular domain 

including the effect of the crack(s) EL2/T] 
Teq  5 equivalent transmissitivity for domain between 

reference point and well [L 2/T] 
5 transmissivity at x inside the strip dx under the 

trough [L2 /T] 

U s  5 flux component in the direction of the crack 
generated by the uniform flow independent of 
the crack [L2/T] 

U 5(r) 5 flux component at r in the direction of the crack 
generated by the well independent of the crack EL2/T] 

v 5 valuator to determine effect of a leaky wall [-1 

x 5 coordinate with the origin at the point of 
projection of the well on the line of observation [L] 

x 6 modified coordinate [L] 

xm,ym,zm 4 coordinates of point m [L] 
X 5 parameter E-] 
X' 6 modified coordinate [L] 

Y 5 parameter [-] 

Z 4 observation level [L] 
Z ref 4 level of reference plane [L] 

a 6 parameter in derivation E-] 
5 constant E-] 

U' i  6 parameters in derivation i = 1,2,3 [-] 
a° 3 + 1 /2 it, orientation of dipoles at line-doublet E-] 

6 parameter in derivation E-] 
PC 5 constant E-] 
Pi 6 parameters in derivation, i = 1,5 E-] 
PP  6 parameter in derivation E-] 
ISO 3 orientation of dipole, line-dipole E-]. 
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symbol defined meaning 
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y 3 vertical flow or strength per unit area [L/T] 
5 constant [-1 

yj 6 parameters in derivation, i = 113 [-] 
71  7 corner between the surface water and the water 

divide [-1 

6 parameters in derivation, i = 1,5 [-1 
5 length of the well screen [L] 

A 4 smoothing parameter [L] 
A° 5 angle between line-sink and considered line [-] 

7 parameter in derivation [L2 /T] 
6 parameters in derivation, i = 1,11 [-] 
6 parameter including p [-] 

scale 4 scale parameter [-] 
5 excentricity of the well screen [L] 

7 parameter in derivation [L2 /T] 
Ki  6 constant i = 1,23 [T],[T],[-] 

X 4 characteristic length [L] 
?co1 6 combined characteristic length [L] 
2,0  6 characteristic length in the upper aquifer [L] 

6 minor 	characteristic length in the upper 
aquifer [L] 

2, 1  6 characteristic length in the lower aquifer [L] 

v 3 relative density [-] 
v0  4 constan[ related to relative density [-] 

p 4 density, varying with place [MIL3 ] 
pf 3 density of fresh water EMIL3 1 
p 5  3 density of salt water 	[MIL3 ] 

td I p 3 strength of dipole [L*L3ITI 

dip 3 strength of line-dipole per unit length [L3 /L.T] 

0dou 3 strength of line-doublet [L3 IL.T] 

Gi n h 3 strength of inhomogeneity EL3 /L.T] 

olin 3 strength of line-sink per unit length [L3 /L.T1 

3 head [L] 
p(pf) 4 head in the regional aquifer in terms of p 	[L] 

3 head in aquifer i = 0,1,2,3 ..... [L] 
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3 head in the lower part of an aquifer with 
impermeable Iaminae [L] 

Pref 5 head at the reference point [L] 
PZref(Pf) 4 head at reference level in terms of p [L] 

3 head (in terms of p) in the saline part of the 
aquifer [L] 

3 head in the upper part of an aquifer with 
impermeable Iaminae [L] 

TW 5 head at the well radius [L] 
6 head in the upper, local aquifer [L] 

Po(0) 6 head in the upper, local aquifer at x = 0 [L] 
p0(-B/2) 6 head in the upper, local aquifer at x = -13/2 [L] 
p0(r) 6 head at the boundary between the entrance 

resistance layer and the top aquifer [L] 
PO,Bav 6 average of Po  over 13/2 <X <0 [L] 
PO,Lav 6 average of p0  over 0 < x < L/2 [L] 
Ti 6 head in the regional aquifer [L] 

P1,Lav 6 average of Pi  over L [L] 
6 head in the regional aquifer at x = L [L] 
5 head in the regional aquifer at x [L] 
5 head in the regional aquifer at x = 0 [L] 

P2 3 head in the second (lowest) aquifer [L] 
3 discharge potential [L3/TI 

ref 3 discharge potential at the reference point [L3/T] 
3 discharge potential in an observation point P, 

generated by all elements in the model [L3/TI 
m,j 3 discharge potential in observation point 1 m , 

generated by element j [L3/TI 
t(r) 3 discharge potential at distance r from the well [L3/TI 

3 discharge potential at the outside of the 
inhomogeneity boundary [L3 /TI 

3 stream function [L3/TI 

3 complex potential [L3/TI 

236 



CURRICULUM VITAE 
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Stellingen behorende bij het proefschrift 
"Groundwater modeling of large domains with analytic eIements 
W.J. de Lange. 

Modellen voor Iandelijk integraal water beheer zijn bedoeld voor meer-
malig en veelzijdig gebruik en verdienen daarom een permanent en 
zorgvuldig onderhoud (dit proefschrift, p.19). 

2 Modelleren met analytische elementen verschilt van modelleren met 
andere technieken omdat: 
- elk watervoerend pakket oneiridig uitgestrekt is; 
- elk element zelfstandig werkt in het hele watervoerende pakket; 
- gekozen moet worden uit verschillende typen van elementen (naast de 

op te geven randvoorwaarde); 
- het combineren van elementen de betekenis heeft van het combineren 

van voor grondwater van belang zijnde eenheden (polders, rivieren, 
onttrekkingen, stuwwallen, aquifer afsluitingen); 

- het conceptuele model geformuleerd wordt in termen van grondwater-
eenheden in plaats van in geohydrologische constanten (trans m i ssiviteit, 
weerstand, etc.) (dit proefschrift, pp. 20, 21). 

3 Modelleren met analytische elementen vereist gedegen kennis van de te 
gebruiken element types en van de mogelijke combinaties daarmee (dit 
proefschrift, p. 69). 

4 Het gebruik van analytische elementen leidt tot een ongekende flexibiliteit 
in het aanpassen van een model en versterkt het inzicht in het functioneren 
van het gemodelleerde systeem (dit proefschrift, pp.  125-138). 

5 Na voltooiing van de voorziene ontwikkelingen zal de analytische elemen-
ten methode ongekende mogelijkheden bezitten voor het modelleren van 
grondwaterstroming (dit proefschrift, p. 66-68). 

6 De interactie tussen grote aantallen oppervlaktewateren en het onderliggende 
grondwater kan worden beschreven met eenvoudige formules voor de twee 
parameters in een Cauchy randvoorwaarde. Deze parameters zijn de 
voedingsweerstand en het gemodificeerde oppervlaktewater peil (maar niet 
het oppervlaktewater peil sec) (dit proefschrift, p. 148). 

7 De voedingsweerstand is vrijwel lineair gerelateerd met de afstand tussen 
oppervlaktewateren voor afstanden die aanmerkelijk kleiner of aanmerke-
lijk groter zijn dan de spreidingslengte van het freatische watervoerend 
pakket, zijnde de wortel uit het produkt van de transmissiviteit en de 
weerstand van de onderliggende scheidende laag (dit proefschrift, p.  148). 

8 De voedingsweerstand kan niet eenvoudig worden berekend met behulp 
van de drainageweerstand (dit proefschrift pp. 153, 155-156). 



9 Berekening van de voedingsweerstand met behuip van een (computer-) 
model is alleen mogelijk indien dat model werkelijk stroming tussen de 
oppervlaktewateren en het bovenste watervoerend pakket simuleert (dit 
proefschrift, p.  158-160). 

10 Het bestaande gebruik van de drainagedichtheid voor de bepaling van de 
representatieve afstand tussen willekeurig gesitueerde oppervlaktewateren 
in de formule voor de voedingsweerstand is aanvaardbaar indien (1) de 
grondwaterstroming hoofdzakelijk parallel (in het horizontale viak) is nabij 
de oppervlaktewateren en (2) de voedingsweerstand bij benadering een 
lineaire relatie heeft met de afstand tussen de oppervlaktewateren (dit 
proefschrift, p.  196-200). 

11 Zolang de hoek tussen twee rechte oppervlaktewateren kleiner is dan 180 
graden stroomt er geen grondwater rtaar het kruispunt van deze wateren 
(contra conclusie van E.G. Youngs in Patterns of steady groundwater 
movement in bounded unconfined aquifers, Journal of Hydrology nr. 131 
pp. 239-253, 1992) (dit proefschrift, p. 190-191). 

12 De interactie tussen oppervlaktewater en grondwater wordt te vaak onbe-
grepen danwel onbegrijpelijk gemodelleerd. 

13 Om zinvolle resultaten te kunnen leveren hoeft een model niet per se 
stroomlijnen en verplaatsingen te produceren die aan de hydrochemie 
beantwoorden (contra stelling 8 bij proefschrift P.J. Stuijfzand, 1993). 

14 Het is bij weinigen bekend dat Dupuit en Darcy ook formules hebben 
afgeleid die gebruikt zijn in stedelijke afvoerhydrologie. H. Mannes, Die 
Berechnung von Rohrnetzen staedtischer Wasserleitungen, R. Oldenburg 
Muenchen, 1912. 

15 Een onderzoeker moet herhaaldelijk eigen werk over boord durven zetten. 

16 Vanwege de klelnere halfwaardetijd verdient het aanbeveling om op 
computers relatief meer milieubelasting te heffen dan op autos. 

17 Het stellen van rechtmatigheid boven doelmatigheid door het rijk (nieuw-
jaarsrede 1994, J. de Jong, RIZA) leidt tot afname van de produktie bij ver 
hoogde werkdruk. In extrema kan dit resulteren in overwerkte ambtenaren 
die niets produceren behalve een boekhouding met een accountants-
verkiaring. 

18 De trein creëert een ouderwets gevoel van samenzijn. 

19 Het schrijven van een proefschrift neemt meer tijd dan dde zwangerschappen. 

20 Modelleren is model-leren. 




