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ABSTRACT

A theoretical analysis is presented of the influence of irrigation on temperature and humidity of the lower
air layers and on the energy balance of the surface. Starting from meteorological data for the dry land
(averaged over periods of a few days or longer), the average temperature and moisture profiles in an irri-
gated area are calculated as functions of the distance downwind from its boundary. The principal simpli-
fying assumption in the analysis is that for each height the eddy diffusivities should have the same values
in the irrigated and non-irrigated areas. )

The theory is applied to and illustrated by measurements of climatic differences between irrigated and
non-irrigated pastures in the Australian Riverina. Experimental results of other investigators are briefly
discussed, '

The present developments have led to a theoretical estimate, taking advective energy into account, of
the potential evaporation rate for irrigated areas of limited extent on the basis of standard meteorological
data for the dry land. The influence of advection decreases rapidly with increasing distance downwind.

Under summer conditions in the Australian Riverina, it is considerable up to distances of about 1 km.

1. Introduction

In arid and semi-arid regions, irrigation exerts a
profound influence on the climate near the ground
and on the partition of energy at the surface of the
earth. Comparing the situation in an irrigated area
with that of the adjacent dry land, it is obvious that
the extra water available causes more energy to be
consumed in evaporation and less in heating the air
and the soil. The temperature of the lowest layers of
air is therefore reduced by irrigation, whilst the
humidity of these layers is increased. In addition, the
lower surface temperature leads to a reduction of the
emission of long-wave radiation from the ground.
The degree of modification of the energy balance and
the climatic elements depends mainly on the irrigation
rate, the “dryness’ of the dry land, and the rate of
advection of warm and dry air into the wet region.

Until recently, little was known quantitatively
about these effects, but during the past five to ten
years a number of experimental studies of meteor-
ological differences between irrigated and non-
irrigated fields have been carried out by Russian
workers (e.g., Chudnowskii, 1953, 1954 ; Dzerdzeevskii,
1952, 1954 ; Fel'dman, 1953; Gal'tsov, 1953 ; L'vovich,
1954).

Recently some attention was given to the problem
also Nn the U.S.A. (Halstead and Covey, 1957;
Lemon, Glaser, and Satterwhite, 1957 ; Tanner, 1957).
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During the past two years, the author, in co-opera-
tion with others, has measured climatic differences
between irrigated and dry pastures in the Australian
Riverina (a large plain drained by the Murray and
Murrumbidgee Rivers). Some results of these experi-
ments are presented here, but a detailed account will
be published elsewhere.

The principal aim of this paper is to present a
theory which attempts to describe these phenomena
quantitatively. Its object is to calculate, on the basis
of meteorological data for the dry land, the energy
balance and the temperature and humidity regimes
of the irrigated area for a given irrigation rate. The
present analysis is an extension and modification of
that published by Timofeev (1954). .

A closely related problem of great practical im-
portance is that of the potential evaporation rate of
an irrigated area of limited extent. The present
developments have led to a way of estimating this
potential rate for irrigated pastures from average
standard meteorological data of the dry land.

After explanation of the symbolism in section 2, the
theory is expounded in sections 3 to 6. Purely mathe-
matical developments are treated in an appendix. An
illustrative example based on the author’s experiments
is discussed in sections 7 to 9, the potential evaporation
rate being treated in section 8. Some further experi-
mental evidence collected from the work of others is
discussed in section 10. The paper closes with a brief
discussion of the limitations of the theory.
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2. Notation and units 2

a = z1Lpwl/pacaKro, (C),

a1 = 51Lpw/paCeK o, (cn day C),

A (cal cm—? day~'): surface flux density of sensible heat
into the air (positive when away from the surface),

B = 421€Uﬁod/paCaK1{o,

ca(cal g~'C1) : specific heat of air at constant pressure,

C =e¢ = 1.781,

d(C): difference between surface temperature and
surface dew point for the dry land,

D = z.p.1/pKwo, :

Dy = zpw/pKwoe, (cm™t day),

e(mm Hg): pressure of water vapor,

E(cm/day): evaporation rate,

H;W: Hankel function of order j,

I(cm/day): irrigation rate,

I;: modified Bessel function of first kind and order j,

J;i: Bessel function of first kind and order j,

k = 0.40: Karman'’s constant,

Kg(cm?/day): eddy diffusivity for heat,

K;: modified Bessel function of second kind and
order j, '

Kw(cm?/day): eddy diffusivity for water vapor,

L(cal/g): latent heat of evaporation of water,

m : exponent in power law expression for wind velocity,

n: exponent in power law expression for eddy
diffusivities,

p: variable in Laplace transformation,

P(cm/day): precipitation rate,

g: specific humidity,

r: reflection coefficient of surface for short wave
radiation,

r(cm): radius vector,

Ry(cal cm™ day™!): intensity of atmospheric (long
wave) radiation at the surface,

R;(cal cm~? day™!): intensity of short wave radiation
(from sun and sky) at the surface,

s(C): slope of temperature versus saturated specific
humidity curve,

S(cal cm™2 day!): surface flux density of heat in the
soil (positive when away from the surface),

t(day): time,

T'(K): absolute potential temperature,

u(cm/day): horizontal component of wind velocity,

u,(cm/day) : friction velocity,

v(cm/day): vector wind velocity,

x(cm) : distance downwind in irrigated area,

X (cm): length of irrigated area in direction of wind,

Y;: Bessel function of second kind and order j,

z(cm) : vertical co-ordinate (positive upwards),

21(cm) : reference height,

Z(cm): arbitrary large value of z,

B = 2B/(1 + m),

v = 0.5772: Euler’s constant,

2 Subscripts ¢ and d refer to irrigated and dry, respectively;
surface values (z = 0) are indicated by the subscript 0.
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e: emissivity of surface for long wave radiation,

n = 1 + 3/2:: dimensionless height,

H=1+4 Z/z,

0 =T;— T4 (C): temperature difference between
irrigated and non-irrigated areas,

#(C): Laplace transform of 8,

u: fractional cloudiness,

¢y = Kgox/21*u: dimensionless distance downwind,

tw = Kwox/21*u0: dimensionless distance downwind,

pa(g/cm?) : density of air,

pwl(g/cm?) : density of liquid water,

o = 1176 X 1077 cal cm—?day'K—*:
mann’s constant,

X = ¢i — ¢a: difference in specific humidity between
irrigated and non-irrigated areas.

Stefan-Boltz-

3. The energy balance of dry and irrigated land

The energy balance of the surface of the earth in
the dry (subscript d) and irrigated (subscript ) areas
is expressed as follows:

(1 = 70)Rea + Raa — €a6Tos* = Sa + Aa + LpuEa (1)
(1 - ri)Rsi + Roi — €00t = S+ 4:+ prEi- (2)

Obviously some of the quantities in (1) and (2)
will not differ much when the areas are contiguous and
the irrigated area is of limited extent—as, for instance,
with dimensions of the order of 10 km or less. Under
these restricting conditions, we can write, to a good
degree of approximation,

de = Rsi = Rn (3)
and
Rui = Rei = R.. 4)

Regarding (4), we shall see later that the influence
of irrigation on air temperature and humidity is
restricted to a comparatively shallow layer which
contributes only a small fraction of the total atmos-
pheric radiation. In addition, the decrease in temper-
ature and the increase in absolute humidity due to
irrigation have opposite effects on the emission of
long-wave radiation by this layer.

The average evaporation rate of the dry land will
be equal to the average precipitation rate for periods
that are not too short—such as the order of a week or
more. Hence we have

Eq = Pa. (5)

Assuming that available water is limiting evaporation
(Philip, 1957), we have similarly

E;=P;+ I (6)

In the case of water loss due to drainage, P and I in
(5) and (6) must be understood to represent that
quantity of precipitation and irrigation water which
is evaporated. In the majority of practical cases, the
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proportion evaporated will be very close to unity in
(5) and not very different from unity (say >0.85)
in (6).

From (1) to (6), we then obtain (with P; = P,)

(ri = 7Ry + o(eaTos* — €T 0s*)
=(S: = S) + (de — A) — LpoI. (7)

The terms (r; — 73)R, and Sg — S; will often be small
in comparison with the other terms in (7) when
periods of a week or longer are considered. For the
radiation term, this is due to the small difference
between 7; and rs (List, 1951; or Falckenberg and
Schnaidt, 1952). The heat fluxes in the soil (S; and S;)
are comparatively small terms in (1) and (2). More-
over, in comparing both regions, the smaller temper-
ature gradient in the upper soil layers in the wet area
is compensated by a greater thermal conductivity of
the soil. The author has shown elsewhere (de Vries,
1956) that for the annual cycle these effects almost
balance. Chudnowskii (1953) arrived at the same
conclusion on the basis of experimental data.

To simplify the notation, we shall therefore reduce
(7) further to

A;— Aou= — LpI — e (Toq* — Toi%), 8)

where we have also substituted ¢; = ez = e. However,
if necessary; the neglected terms can be retained
without complicating subsequent developments, pro-
vided that they are constant.

4. The difference in air temperature

After comparing the energy balances of the two
regions, we now turn our attention to air temperature.
The essence of the present analysis is that we take
the solution which nature presents for the dry land
as a starting point and calculate the temperature
difference due to irrigation. In addition, we eliminate
short-time variations by considering average values
over periods of the order of a few days or more.

The equation of heat conduction for the (homo-
geneous) dry land upwind from the irrigated region is

9paCal alz, 1) 3 T 4(z, t)
— = - a aK - ‘ 9
at 3z (p Colbia ) ©

For the irrigated area, we have
0pocaT i (1, 1)
dt

= V[ puaK v Ti(r, t)]

—V [pacav(Ti — T1) ]

The second term on the right hand side of (10) arises
from advective heat transfer; T4 is an arbitrary
reference temperature. Using the continuity equation

(10)

dpa
at

= -V (pav)
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and neglecting variations of p.c,, equation (10) reduces
to

9T /ot = v (Ku: ¥V T) — (v T,).

Now introducing the temperature difference 6(x,z2,t)
= T;— Ty, and assuming Ky; = Kya = Ku, we
obtain

80/9t = v (Kuv0) — (v T,). (11)

The assumption Kgg = Ky; will hold true to a
good degree of approximation in the lowest air layers
where forced convection dominates free convection
(provided that the aerodynamic properties of the dry
and irrigated surfaces are about the same) and also at
heights which are sufficiently great for the influence
of irrigation on the temperature profile to be small, so
that buoyancy effects will be approximately the same
in both cases. There will be an intermediate region
where Kpgq is systematically greater than Ky, the
depth of which will depend on wind speed and heat
flux. However, the assumption Kp¢ = Kag; is essential
for making the problem amenable to analysis; its
influence will be discussed further below.

Observation has shown that 46/t is small for an
irrigation rate that is constant in time. In other words,
although both 74 and T; change with time, their
difference depends mainly on the irrigation rate:

Neglecting diffusion downwind and across wind, we
finally obtain for a horizontal-wind movement in the
x-direction the following differential equation for 6:

a6 a a0
u—=—(Ky— ) : (12)
dx 0z 9z :
From (8), we have the boundary condition
08
- PaCa KH — ) = — prI —_ 460’T0d300. (13)
63 2=0
Furthermore,
0(x,2) =0, for z = o, (14)

The problem has now been reduced to that of heat
conduction in a semi-infinite medium with prescribed
heat flux at the surface and radiation into a medium
at zero temperature. The only complication is that
u and Ky are functions of 2. A proper choice of these
functions must be made so that on the one hand they
represent actual conditions to a sufficient degree of
approximation and on the other hand lead to manage-
able solutions. This problem is discussed in the
appendix.

Here we present the solution for the case where

u = uo(l + z/21)™, (15)
and

KH = Kyo(l + 2/21). (16)
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Here, 2 is a properly chosen reference height which and
can be, but need not be, the roughness height of the x(x,32) =0, for z= 0. (20)
surface. The influence of the infinite increase of K ) ) )
with height will be considered later. The solution with «, given by (15) and

For u, it would have been preferable to select a

) = 21

logarithmic profile or a profile proportional to z™ i Ky = Kwo(l + 2/21), 2y
However, both cases lead to great mathematical
difficulties. A solution in terms of tabulated functions B 4D ;‘“’ Jo(@) Y1(v) —T1(v) Yo (2")
can be derived for u~zgm K~ g and (K80/988).—o X~ (14+m)r Jo P[0+ Y 2@)]
= constant (Timofeev, 1954). However, the latter L 2t o)1 dy )
condition is at variance with equation (13). X {1 —exp[ =5 (1+m)*wo?) Jdv,  (22)

The present profile for » only differs markedly from
that of a normal power law for z-values of the order
of 21 or less. (In the example discussed below, 2, is
less than 1 cm.)

The solution of (12) to (16), as derived in the
appendix, is

o 4a f” [of1(z, v')+Bf2(v, v')]
(I+m)w Jo  03f3(v) +28v%f1(v) +B%fs(v)
X {1—exp[ —+(14+m)2pv?*]}dv, (17)

with
a = ZprwI/paCaKHo,
B = 82160 T0®/paCaKuo(1 + m),
tn = Kpox/z:1%u,
v = v(l + z/z,)0tm2
f1(@2") = Jo(@) Y1(v) — Yo(v')J1(2v),
fa(@,v") = Jo(@') YVo(v) — Yo(¥")Jo(v),
fa(@) = Ji(v) + Vi(v),
fa(w) = Jo(@)J1(v) + Yo(¥) ¥1(v),
fs(@) = Jo*(@v) + Yo’ ().

]

i

Calculations of 8 from (17) are laborious. However,
for many @8- and ¢p-values that are of practical interest,
# can be found from simpler asymptotic expressions
given in the appendix (equations A14 and A15).

5. The difference in humidity

By an argument similar to that of the previous
section and under similar restricting conditions, the
following differential equation for the difference in
specific humidity, x = ¢: — g4, of the air in both
areas is found:

ox 0 3
n X = (K x (18)

= — w

dx 0z 0z

The only difference between (18) and (12) is the

occurrence of the diffusion coefficient for water vapor,
Kw, instead of Kg.

The boundary conditions, analogous to (13) and

(14), are
Ix
~ e (KW—) = pul, (19)
az 2=0

with D = z1pul/peKwe, Ew = Kwox/2:%u0. An asymp-
totic expression for large {w is given in the appendix
(equation A16). Values of x for z = 0 can be found in
Carslaw-Jaeger (1948).

Note on Timofeev's analysis.—If we multiply
equation (18) by L/c, and add it to (12), putting
Ky = Kw, we obtain a similar differential equation
for 8 + Lx/c—i.e., the difference in equivalent
potential temperature between the dry and irrigated
areas. This equation was given by Timofeev (1954)
without derivation and without stating the simplifying
assumptions on which it is based. Timofeev applies
this equation to the case where

Kys = Kwi = aKpa = aKwa, (23)
where « is a constant smaller than 1. This means that
he also neglects a term (1 — «)0(ZTq + Lgs/ca)/3¢ in
his differential equation. This term will only be small
when « lies close to 1. Moreover, from a physical
viewpoint, the present author considers the assump-
tion (23) with constant « < 1 not to be an improve-
ment of the assumption « = 1 except when the
aerodynamic properties of the dry and irrigated
surfaces are very different. In that case, there are
further difficulties due to the fact that in a transition
region the vertical component of v must be appreciably
different from zero.

In the boundary condition for d(8 4+ Lx/c,)/dz
following from (13) and (14), the terms with I cancel
out. Timofeev further assumes that at the surface
(6 + Lx/ca)/d2z is constant—i.e., independent of x.
He shows how this constant depends on the difference
in net radiation between the dry and irrigated areas
and on the soil heat flux density; the latter quantities
must be determined experimentally. Timofeev then
gives solutions for # ~ a7, K ~ gi=m,

Hence, the principal differences between Timofeev's
analysis and the present one are: (a) in our treatment,
the difference in net radiation is related to the differ-
ence in surface temperature between irrigated and
dry land; (b) the temperature and moisture profiles
are solved for separately and are related to the
irrigation rate, whereas Timofeev eliminates I and
finds a solution for the equivalent temperature only.
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TABLE 1. Average meteorological data for the area
(period 8 to 22 December 1957).

Solar radiation (R,) 7.8 X 102 cal cm~2 day™!
Reflection coefficient (r) 0.2
Fractional cloudiness (u) 0.3
Horizontal wind velocity () at 200 cm
Average 2.5 X 10 cm/day
Diurnal amplitude 1.1 X 107 cm/day
Irrigation rate (I) 8 8

Precipitation rate (P)

TABLE 2. Averages and average diurnal amplitudes of meteoro-
logi%il data for the various stations (period 8 to 22 December
1957).

Station number

1 2 3 4

Air temperature, 125 cm (C)

Average 22.1 20.7 20.0 19.7

Amplitude 8.9 8.7 8.5 8.8
Soil temperature (C)

Average, —5 cm 30.8 18.5

Amplitude, —5 cm 8.4 2.5

Average, —-30 cm 27.7 17.3

Amplitude, —30 cm 1.7 0.4
Relative humidity, 125 cm

Average 0.50 0.59 0.61 0.63

Amplitude ' 0.32 0.32 0.30 0.31
Dew point, 125 cm (C)

Average 9.4 11.1 11.2 11.3
Precipitation (cm) 0.48 0.55 0.33 0.20

6. Solutions for more complicated cases

In section 3, it was assumed that certain terms in
(7) were negligible and, as a consequence, a in (17) is
a constant proportional to I. When these terms have
to be retained, the solution (17) remains valid if they
are constant, @ being of the form ¢1I 4 ¢: in this case.

The solutions become more complex when I or other
terms in the expression for 4; — Ag4 are functions of x.
When the Laplace transforms of these functions are
known, the same procedure as set out in the appendix
can be applied but more complicated expressions for
¢ and x will be found.

A simple case of practical importance is that of an
irrigated area with constant irrigation rate and length
X in the wind direction, where we are interested in
the behavior for x > X—i.e., to the leeward of the
irrigated area. For 0 < x < X, the previous solutions
hold. Writing the solution for 8 as

§ = F(x,2), for 0<x <X, (24)

we have

0= F(x,2) — F(x — X,2), for x> X, (25)

whilst a similar solution holds for x.

The case where # and K are given by (15) and (16)
up to a certain height, Z, whilst they are constant
above that height, is treated in section A3 of the
appendix, whilst potential evaporation is dealt with
in section A4.
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@ 8 km from 3

Fic. 1. Plan of the irrigated area, showing irrigation
channels and positions of stations. Co-ordinates of station 3 are
36.4 S, 1448 E.

7. An illustrative example

Experimental lay-out.—Since November 1956, con-
tinuous meteorological measurements have been made
in the Nanneella irrigation district near Rochester
(Victoria). This is a dairying district consisting almost
entirely of irrigated pastures. Fig. 1 shows a plan of
the intensively irrigated area which is surrounded by
dry land apart from some patchy irrigation to the
east and north.

Three meteorological stations were established in
the area (numbers 2 to 4 in fig. 1). A dryland station
(number 1) is situated at a distance of about 6 km to
the southwest of the irrigated area. This station is on
a dryland pasture which has a sparse vegetation of
native grasses. The other stations are on irrigated
pastures, carrying a dense cover of mainly perennial
ryegrass and irrigation white clover, which are grazed
regularly.

Temperatures and relative humidities are recorded
by thermohygrographs placed in Stevenson screens at
normal height at all stations. In addition, soil temper-
atures, rainfall, wind direction and velocity are
recorded at two stations (1 and 3 or 4). The recordings
are supplemented by direct readings of soil and air
temperatures, rainfall, cloudiness, wind velocity and
direction once a week at all stations but more fre-
quently at some of them (daily at 4). A detailed
account of the instrumentation, experimental routine,
and method of compiling the data will be published
elsewhere. '

Results for December 1957 —Some typical results,
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averaged for the period 8 to 22 December 1957 are
shown in tables 1 and 2. The weather during this
period was mostly clear and dry (apart from some
showers on 9 December), and winds were predomi-
nantly from southerly directions. A fifteen-day period
was chosen because this is the interval between
successive irrigations.

The energy balance—We shall now proceed to
analyse the energy balance of the various stations
from the data given in tables 1 and 2.

Solar radiation is measured at Deniliquin (about
100 km north of Rochester) by means of a solarimetric
thermopile (de Vries, 1958b). Values are corrected for
differences of cloudiness between Rochester and
Deniliquin on the basis of a linear regression of daily
total global radiation and fractional cloudiness
(de Vries, 1958b). The albedo of the surface was also
measured with the thermopile and was found to be
0.23 on the average both for the dry land and the
irrigated pastures. Hence, we find (1 — r)R, = 6.0
X 10? cal cm—? day™.

Long-wave radiation from the atmosphere had to
be calculated from an empirical formula. For humid
regions at moderate latitudes, a formula of the type
proposed by Penman (1948) for the net long-wave-
radiation loss from the surface is known to give
reasonable results; e.g.,

Rper = 0T.2(0.47 — 0.077¢,%)(1 — 0.8u), (26)
where 7, and e, are air temperature and vapor
pressure at screen height. Philip (1957) has already
commented on the inadequacy of such a formula
under dry conditions where a large temperature
difference exists between the surface and screen height.
He proposed to modify (26) by substituting 7' for T.
However, in doing so, the emissivity of the surface is
made to depend on cloudiness. We consider it more
logical, therefore, to express atmospheric radiation by
a formula that contains only atmospheric quantities.
As such, we propose
R, = ¢T!(0.53 + 0.077¢,}) (1 — 0.8u) + 0.8x], (27)
which is equivalent with (26) for Ty = T, and ¢ = 1.
From this formula, we find R, = 7.3 X 10? cal cm™?
day.

For the average surface temperature, we find 31.5C
by extrapolation from the observed soil temperatures
and, with ¢ = 1, we obtain eT¢* = 10.1 X 10? cal
cm~2 day~l. The net long-wave-radiation loss from the
surface thus becomes 2.8 X 102 cal cm™? day,
whereas (26) would yield 1.6 X 10? cal cm™2 day.

From the observed soil temperatures, we estimate
Sat 0.2 X 102 cal cm~? day™' (de Vries, 1958a).
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The heat consumed in evaporating precipitation is
calculated at 0.2 X 10? cal cm™ day~!. Because of
very dry weather prior to 8 December 1957, no
evaporation of precipitation of an earlier date need
to be taken into account.

Finally, from the energy balance, we find a value of
2.8 X 10% cal cm™? day™! for the heat transferred to
the air.

For the irrigated stations, the terms (1 — 7)R,, R.,
and S are considered to be the same as for the dry
land, as was explained in section 3. The evaporation
term is found from the precipitation rate plus the
irrigation rate. The latter was computed from figures
supplied by the Victoria State Rivers and Water
Supply Commission at 0.35 cm per day for the area
as a whole.

The surface temperature can now be computed
from the energy balance using the assumption of
equality of eddy diffusivities for the irrigated and the
dry land. From the data for station 1, the heat-transfer
coefficient between the surface and screen height
(125 cm) is

A/ (To ~ Taes) = 2.8 X 102/9.4
0.30 X 10?% cal cm—2 day—!C1,

It

Thus we have® for station 2, with £ = 583 X 0.38
= 2.2 X 10% cal cm~2 day~!, the following:

6.0 + 7.3 — 1.176 X 107°T*
=224 0.2 + 0.30(To; — 293.7),

from which we obtain Ty; = 298.8 K, T = 9.4 X 10?
cal cm™? day! and 4 = 1.5 X 10? cal cm™ day~.
Similarly, we obtain for station 3: To; = 298.3 K,
oot = 9.3 X 10?2 cal cm™? day™!, 4 = 1.6 X 10?
cal cm~? day~!; and for station 4: T,; = 298.1 K,
oot = 9.3 X 102 cal cm™2 day™, 4 = 1.6 X 10% cal
cm™2 day™L.

Application of theory.——We are now in a position to
apply the theory of sections 4 and 5. In doing so, we
must assign suitable values to the parameters 21, %,
Ko, and Kwo. In order to find values for z; and Ky,
we have applied the formulas for forced convection
to the lower air layers, vz.

Kp = Kw = Kugo(1 + 2/21) = 04u,(3 + 21),
u 2.5u« ll’l(l + Z/Zl). ’

Using the observed values of # at 2 = 200 cm and of
the heat transfer coefficient between 0 and 125 cm
given. above we obtain 2; = 0.36 cm, Kyo = Kwo
= 2.25 X 10° cm?®/day, and #, = 18 cm per sec which

3 In using the expression 4 = 30(Ty — T'y2s) for the irrigated
stations, we neglect the influence of advective energy in the layer
between 0 and 125 cm. It can be easily verified that for the

x-values of stations 2, 3, and 4 this leads to an error in 4 of the
order of 0.1 cal cm™2 day™! which is negligible.
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Fic. 2. Calculated temperatures and dew points at the sur-
face (solid curves) and at 125-cm height (broken curves) in
relation to distance downwind in the irrigated area for the period
8 to 22 December 1957. Measured values for 125-cm height
(screen) are shown by circles, surface values calculated from the
energy and water balance by squares. Weighted averages of dew
point are shown by crosses. Numbers 1 to 4 refer to the stations;
the values for station 1 (x < 0) are shown on the axis of ordinates.
Vertical lines indicate standard experimental errors in the differ-
ences between an irrigated station and the dry station.
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F1G. 3. Diurnal variation of the difference in vapor pressure

of an irrigated station, e; (# = 2, 3, 4, shown on the curves),
and the dry station, e,.

are acceptable values. With m = 0.125, we then find
#o = 112 X 10° cm per day and ¢y = &w = 0.155«.
These wvalues lead to @ =1.15 C, B = 0.075, 8
= 0.133, and D = 0.475 X 103,

Results of calculations from the theory of sections
4, 5 and A2, A3 of the appendix for z = 0 cm and
z = 125 cm are presented in fig. 2. Dew points have
been plotted instead of x-values in order to show
temperature and humidity effects on a common scale
of ordinates.

In section A3, asymptotic solutions are given for
the case where K and u increase linearly with 2 up to
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a certain height Z and remain constant for greater
heights. In the present example, we have taken
Z = 10* cm (Lettau, 1952). A comparison of the
solutions for bounded K and u with that for un-
bounded K and % shows that there is no difference
between the two for x < 10% cm and 2z < 125 cm and
only a small difference for x = 108 cm and z == 125 cm.
In the latter case, the values calculated for bounded
K and % have been plotted in fig. 2. Differences
between the two solutions are appreciable at x > 107
cm, but for these large x-values the irrigated area is
no longer of “limited extent” in the sense in which
this term has been used here.

Experimental values of air temperatures at 125 cm
height and of surface temperatures calculated from
the energy balance are also shown in fig. 2. Average
¢-values were determined by averaging x/u for the
period under consideration. To this end, average
wind directions were read from the recordings (in
multiples of 22.5 deg from north) for each six-hour
period, the corresponding distances from the edge of
the irrigated area were measured in fig. 1, and these
were divided by the average wind velocity for the
period.

The standard error in the average temperatures is
0.2C. In fig. 2, the dry-land values have been used as
a datum. The standard error in the differences be-
tween an irrigated station and the dry-land station is
therefore 2% X 0.2 = 0.3C. This error is shown by
vertical lines on either side of the experimental points
for stations 2, 3, and 4. The agreement between
theoretical and observed values is satisfactory.

Average dew points at 0 and 125 cm are also plotted
in fig. 2. The dew points at the surface were obtained
from those at 125 cm, the evaporation rates, and the
mass transfer coefficient* between 0 and 125 cm. The
latter is found by multiplying the heat transfer co-
efficient with 3.42 X 10~3 C/mm Hg.

The standard error in the average relative humidi-
ties is 0.01. In combination with the standard error in
temperature, this leads to a standard error of 0.5C in
the dew points and of 0.7C in the dew-point differences
between an irrigated and the dry-land station. The
latter value is shown by a vertical line on either side
of the experimental points for stations 2, 3, and 4.
The systematic differences between calculated and
observed values are thought to be connected with the
diurnal variation of x, as will be explained below.

Diurnal variation.—It can be easily verified by
taking time averages of equations (12) to (14) over
a period of one day that they do apply for diurnal
averages of the parameters provided that 6 is independ-
ent of time. From table 2, it can be seen that the
diurnal amplitude of the air temperature at 125 ¢m is

4 The influence of advection in the layer of 0 to 125 cm on the
results is negligible (¢f. footnote 3).
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approximately the same for all stations. Hence, the
approximation of constant ¢ appears to be reasonable.

The situation is different for air humidity. In fig. 3,
the differences in vapor pressure between stations 2,
3, 4 and station 1 are plotted as a function of time;
they show a pronounced diurnal variation. For
simplicity, vapor pressures were calculated on the
assumption that both temperature and relative
humidity have a sinusoidal diurnal variation, the
two sine curves being in anti-phase. A comparison
with values calculated directly from the thermo-
hygrograph recordings showed that this is a permissible
simplification.®

The analysis of section 5 can still be applied if we
assume that the diurnal variation of K and # can be
expressed as follows:

Kw = Ko(1 + 2/2)f (),

uo(1 + 3/21)f(t),

where f(¢) is a periodic function with a period of one
day (¢t = 1). Taking a time average over one period
of the equation (¢f. 11)

(28)
(29)

It

u

d d d a
x_ 2 KW—’f)—u—X, (30)
X a0z 0z ox
we find
d ax’ X’
0= (Kw ) —u2, 31
az( v az ) dx (31)
with )
X = [ xstar (32)
0
Similarly, the boundary condition (19) becomes
. ax'
— pal Ko(1 4+ 2/31) — = pol. (33)
az 2=0 ’

Hence, the same formulas as derived for x now
apply to x’. However, it must be kept in mind that
the actual variation of K and # with time will differ
markedly from that expressed by equations (28) and
(29), so that the introduction of x’ can only lead to a
rough estimate of the effects caused by the diurnal
variation of x.

. Wind-velocity observations suggest the following
value of f(t):

f@) =1+ 0.44 sin 2xt. (34)

The maximum of f(¢) occurs at about 15h and co-
incides with the maximum of air temperature and x.
Therefore, the value of x’ is larger than the average
of x. Dewpoints deduced from x’-values are shown
by crosses in fig. 2. They are still lower than the
theoretical values, but the differences are well within
the experimental and theoretical errors.

5 The author is indebted to Mr. W. C. Swinbank for suggesting
this procedure.
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Soil temperatures.—The differences in average soil
temperature between stations 1 and 3 are appreciable,
212. 10.4C at 30-cm depth, 12.3C at 5-cm depth and
{by extrapolation) 12.7C at 0 cm. In comparison, the
calculated difference in surface air temperature for
the two stations is 6.2C. The discrepancy between
these values is ascribed to the effect of the much
denser vegetation at the irrigated station. The grass
cover not only shades the soil but acts in its lowest
layers as a mulch with a low thermal conductivity and
low volumetric heat capacity. This ‘‘blanketing”
effect of a grass cover was also observed and discussed
by Peerlkamp (1944). We further refer to papers by
de Vries and de Wit (1954) and van Duin (1956) for
an analysis of the mulch effect.

Similar effects were observed for stations 2 and 3,
but here only occasional readings of soil thermometers
were available. Comparing these with the soil temper-
atures recorded at station 1 at the same time led to
the following average differences: for station 2, 14.5C
at 5-cm depth and 8.9C at 30-cm depth (averaged
from readings on 9 days in the period 8 to 22 December
1957 at approximately 18h); for station 4, 7.1C at
5-cm depth and 8.3C at 30-cm depth (averaged from
readings on 14 days at about 9h). In comparing these
figures with those for station 3, the diurnal variation
of soil temperature and the position of the stations
with respect to the boundary of the irrigated area
must be taken into account.

8. Potential evaporation in an irrigated area

The potential evaporation rate is usually defined
as the rate of evaporation when water is available in
unlimited quantity ; in other words, it is the maximum
possible evaporation rate under the given meteor-
ological conditions. In an irrigated area, this maximum
rate obviously depends on the distance downwind and
therefore I is an unknown function of x.

When water is non-limiting, saturation will occur
at the surface; hence, I must be chosen such that the
resulting specific humidity at the surface equals the
saturation value corresponding to the resulting surface
temperature. The problem of finding I(x) is solved in
section A4 of the appendix on the assumption that,
for the temperature range in question, the relation
between saturated specific humidity and temperature
is linear to a sufficient degree of approximation. This
implies, of course, that the surface temperature in the
irrigated area must vary in a rather narrow range.

Results of calculations of the potential evaporation
rate and of surface temperature for the example of
section 7 are shown in figs. 4 and 5. The evaporation
rates in fig. 4 were obtained by adding P = 0.03 cm
per day to the calculated I-values. Curve b represents
the variation of the potential evaporation rate with x;
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F16. 4. Potential evaporation rates. Curve a—*"lower potential
evaporation rate’’ (i.e., constant evaporation rate at which water
becomes non-limiting at a fixed distance downwind, x1) in rela-
tion to #x1; curve b—""local potential evaporation rate’’ in relation
to distance downwind, x; curve c—''average potential evapora-
tion rate’’ for an area of width %, in the wind direction in relation
to 1. Ec—Penman’s value (calculated from dryland data) for a
water surface; Er = 0.8 Eq—Penman’s value for a transpiring
8r§>p; Ey'—value for a hypothetical water surface with reflectivity
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Fi1G. 5. Surface temperature difference between irrigated and
dry land, 8y, in relation to distance downwind. Curve a—value
x, for the *“lower potential evaporation rate’’ ; curve b, c—values
for “local and average potential evaporationrates’’ in relation to x.

we shall call this rate the ‘‘local potential evaporation
rate,” E(x). Curve c shows the ‘‘average potential
evaporation rate,” E (x1), for a strip of width x, viz.

_ 1 z1
E(x1) = ;C:J:) E(x)dx

The appertaining values of 8, are plotted as curve b,
c in fig. 5. It will be noted that the variation of surface
temperature is very slight, even over a distance of
10 km. It changes from 17.1C at x = 0 to 20.1C at
x = 10% cm. The corresponding value of s (see section
A4) is 1.22 X 10°C.

In practice, irrigation rates are not varied with
distance downwind, at least not continuously. We
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have therefore also investigated the following problem :
how great is the (constant) irrigation rate, I, at which
water is non-limiting beyond a certain distance x,
downwind? ,

Now I must be chosen such that saturation occurs
at x1. The corresponding. evaporation rate is then
given by I(xi) + P. We shall call this rate the
“lower potential evaporation rate” for an irrigated
area of extent X = x; in the wind direction.

Since, for a constant I-value, 8 and x at the surface
are already known as functions of I and x, it is a
simple matter to find I for a given value of x;. Results
for the example of the previous section are shown as
curve a in fig. 4. The corresponding values of 8q(x,)
at the point where saturation occurs are given by
curve a in fig. 5. It will be noted that the “lower
potential-evaporation rate’ is only slightly less than
the ‘“local potential evaporation rate.” This is also
reflected in the small difference between curves a and
b, cin fig. 5.

The present example illustrates how the potential
evaporation rate can be calculated from meteorological
data for the dry land. It depends, ¢nter alia, on the
“dryness’’ of the dry land (.e., on the difference be-
tween surface temperature and dew point) and on
wind velocity. \

It is interesting to compare the present potential
evaporation rates with that calculated from the dry-
land data without taking advective energy and
modification of the climate by irrigation intoaccount—
e.g., by application of Penman’s (1948) method®. In
fig. 4, we have plotted Penman'’s values for Eo and
Er. Eqapplies to a (hypothetical) water surface which
absorbs 95 per cent of the incoming solar radiation
and has no heat exchange with deeper layers. Er ap-
plies to a transpiring crop; it's value was obtained by
multiplying E, with Penman’s empirical factor 0.8 for
summer months. To illustrate the influence of albedo,
we have calculated E,/, which applies to a hypothetical
wet surface with » = 0.23 (the same as for the grass
cover in our example) and again with no heat exchange
with layers below the surface. It will be noted that, in
the example, differences between the present potential
evaporation rates and E are appreciable up to dis-
tances of the order of 1 km. Er is seen to be a reason-
able estimate for a distance of about 10 km.

According to Penman and Schofield (1951), the
difference between Eq and Er is for the greater part
due to the difference in reflection coefficient (Penman
gives r = 0.20 for his experiments on short grass) and
for the remaining part to biological factors. In our
calculations of the potential evaporation rate, the

latter are not taken into account. However, their

¢ It is recognized that Penman does not consider his method
to be applicable under arid or semi-arid conditions.
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influence is considered to be small for a grass cover
with ample water supply (Makkink, 1955, 1957; and
Businger, 1956).

It follows from fig. 4 that from a viewpoint of water
economy it is advantageous to have few large irrigated
areas instead of many scattered small ones. This ap-
plies notably to conditions in the Australian Riverina,
where irrigated pastures often have linear dimensions
of the order of 100 m.

9. The horizontal and vertical extent of the influence
of irrigation

We shall now briefly discuss how far the effect of
an irrigated area extends in a horizontal and a vertical
direction. The horizontal effect can be deduced from
equation (25) of section 6.

The ¢-value for a point at a distance aX to the
leeward of the irrigated area is

0 =FL(1+ a)X] — F(eX), (35)

and a similar equation holds for x. When 6 and x are
plotted against log x as in fig. 2, the right-hand side of
(35) is given by the difference of the ordinates cor-
responding to two points which are log(1 + )/« apart
on the scale of abscissae. It will be noted that # and x
become small when a is of the order of unity or
greater. In other words, the horizontal influence of an
irrigated area to its leeward extends over a distance
of the order of magnitude of the area’s width in the
wind direction. This conclusion is confirmed by
experimental findings of Dzerdzeevskii (1954).

It follows from equations (A14) and (A16) of the
appendix that, when § is sufficiently great, 8 and x
become very small if

1 + z/z) =~ (1 -+ m)2E/1.781.
For the example of section 7, this leads to

z =~ 0.05x%°, for x > 10°%

(36)

Hence, in this case, the influence of irrigation on air
temperatures and humidities extends to a height of
about 0.01x.

10. Discussion of other work

As has been mentioned already in the introduction,
much experimental work on climatic differences
between irrigated and non-irrigated areas was carried
out in Russia. A number of references were given, but
these by no means constitute a full bibliography of
the Russian work. Difficulties in obtaining papers
published as symposia reports and limited translation
facilities have impeded us from covering the Russian
literature more completely. However, it is believed
that the papers referred to here form a representative
sample.
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Although some of the Russian investigations were
carried out in considerable detail, with measurements
of temperature and humidity profiles both in vertical
and horizontal directions, none of it could be analysed
quantitatively because one or more of the parameters
occurring in the theory were unknown. A major
difference between the Russian work and our own is
that the former was usually performed on isolated
days, whereas our observations extended continuously
over a long period. Moreover, the Russian investiga-
tions mostly refer to tall vegetation, such as wheat,
cotton or orchards.

The orders of magnitude of the differences in
radiation, temperature, and humidity between ir-
rigated and non-irrigated areas, and their variation
with distance downwind as observed -by Russian
workers agree in most cases with expectations on the
basis of our experimental and theoretical results. This
applies, for instance, to differences in radiation balance
reported by Chudnowskii (1953) and Dzerdzeevskii
(1954), to differences in temperature and humidity
given by these authors, Fel'dman (1953) and Gal'tsov
(1953), and to the influence found to the leeward of
the irrigated area as measured by Gal'tsov (1953)
and Dzerdzeevskii (1954).

Only one instance of direct measurements of poten-
tial evaporation from an irrigated field was found in
the literature—uviz., those of Haude (1957). He de-
termined the evaporation from bare soil in Egypt by
weighing buried tanks in the middle of a 1500-m? wet
field. Evaporation rates during the summer months
were approximately 1 cm per day. This compares
favourably with values expected for summer condi-
tions at approximately the same latitude in Australia
(fig. 4).

Lemon et al (1957) report the influence of advective
energy at a distance of 10 mi downwind in an irrigated
cotton field.

11. Limitations of the theory

The analysis presented in this paper strictly applies
only to the case of forced convection over surfaces of
uniform roughness. However, although the form of
equations (16) and (21) for Ky and Ky is that for
forced convection, one still is free to select the parame-
ters Kgo, Kwo and 2, in such a way that Ky and Ky
conform as closely as possible to actual conditions.
Hence, Ko need not be taken equal to Kwo, and 2;
may differ from the roughness height.

A more serious limitation lies in the fact that
diffusivities are assumed to be the same over the dry
land and the irrigated area. The influence of this
assumption is difficult to assess analytically; our
results indicate that its effect is small, except probably
with light winds, but then the interaction between dry
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and irrigated areas is small anyhow. Moreover, it
must be kept in mind that the present unsatisfactory
state of knowledge regarding eddy diffusivities
seriously limits the possibilities for further quantita-
tive refinements.

The effect of differences in surface roughness
between irrigated and non-irrigated pastures is
probably small in comparison with the influence of
other simplifications. The same will apply in the case
of other short and dense crops. With taller dense
crops, such as cereals, the influence of the vegetation
on the wind profile and diffusivities is not negligible
(Rider, 1954; Halstead and Covey, 1957). Possibly
the present theory can be applied in a modified form
by the introduction of a suitable zero-plane displace-
ment for height in the irrigated area.

The situation is more complicated with a tall and
open vegetation, as is found in orchards and vineyards.
Here we have, apart from the ‘‘oasis effect,” to deal
with the ‘‘clothes line effect’” (the term is due to
Tanner, 1957) which means the effect of relatively
warm and dry air blowing through the vegetation.

The theory also does not apply to evaporation from
a body of water as, for example, from reservoirs and
lakes where the energy conditions are quite different
from those considered here due to the penetration of
solar radiation to deeper layers.

Within the above-mentioned limitations, the present
theory provides, apparently for the first time, a
quantitative physical analysis of the influence of
irrigation on the microclimate and the energy balance
and a method of calculating the water needs of
irrigated crops.
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MATHEMATICAL APPENDIX
Al. Derivation of solutions for 6 and x

Equations (12), (13), and (14) rewritten in di-
mensionless form (except for 8) are

¢ﬁ=3(wﬁ), (A1)

9t dn an

— (86/3m)per = — a — Boo, (A2)
6(& ») =0, (A3)

with
n=1+42/2, £¢=Etn, ¢ =u/u, and ¢ = Kg/Kgo.

Solutions can be found by the Laplace-transforma-
tion method (Carslaw-Jaeger, 1948). Let #(5) be the
Laplace transform of 6, then we have

- i( s (A4)

ppd = dn llld'l] ):
(= d¥/dn)ymr = — a/p — Bs(1), (AS)
(o) = 0. (A6)

For ¢ = 9™ and ¢ = 9™, equation (A4) is of the
Bessel type and the solution satisfying (A6) is

2 pipetm—n)/2
(,LL__>’ (A7)

S~y U—m) T 1)
24+m—n

" 1—n

2—n+m

where H is a Bessel function of the third kind. The
proportionality factor follows from (AS).

Solutions in the form of tabulated functions are
obtained in the following cases.”

(a) » = m = 0—i.e., eddy conductivity and wind
velocity constant with height.

The solutions (Carslaw-Jaeger, 1948) are

7—1
B 2¢}

—exp [B(n — 1) + B%]

-1
X erfc ( 77255 + B«?)} , (A8)

x = D{2r ¥t exp[ — (n — 1)%/4£]
== 1erfc[(n — 1)/28]}.

(b) » = (4 + m), m arbitrary positive.

(A9)

7 The mathematics for the transformed variable is analogous
to that for periodic solutions (de Vries, 1957).
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From (A7) and (AS) we obtain

g O I exp[ 3} (1m) (r P —1)]

B4-1(1 ¥
[ +3( +m)+P ]P (AIO)
and
an—a+mis 3(pUtmis_1)
“‘B+%(1+m>[e T20+me
3(B4iit (+myf3—1q ‘
—-exp[ ( 3+3m)(n )—l—(B—i—%—}—%m)?E]
14m
. 3(prmi—1) o )
Xer C[m+(3+§+§m)f’]] - (A1)

The corresponding solution for x is found by sub-
stituting —¢ = D and B = 0.

(c) » = 1, m arbitrary positive.

The solution for ¢ now becomes

— aKo[ZP* (1 .{..m)-l,,’ (1+m)i2]

(9"—' )
PP [2p1 (1 4+m) ]+ BK[2p (1 4+m)1]}
(A12)

from which (17) is found by the usual procedure.
Equation (22) follows from (17) by the substitutions
—a = Dand 8 = 0.

The cases treated here by no means exhaust the
possibilities of finding solutions to (A1), (A2), and
(A3), of course. However, no other manageable
solutions that approximate actual conditions more
accurately than the present ones were found. The
solutions under (b) and (c) differ from actual condi-
tions mainly in two respects: (i) the infinite increase
of # and K with height, the influence of which is
discussed in section A3; (ii) the non-zero value of
¢ for 2 = 0. The influence of the latter factor is
restricted to a shallow layer of air (with thickness
of the order 2z;) and is considered to be of little
importance.

In applications to actual data, case (c) has been
used. Cases (a) and (b) provide convenient additional
solutions for rapid exploratory calculations.

A2, Asymptotic solutions

Asymptotic expansions for large £ of the solutions
(A8), (A9), and (A11) follow from the well-known
asymptotic expansions of erfc and the exponential
function.

The method of obtaining aymptotic expansions in
case (c) has been discussed in detail by Ritchie and
Sakakura (1956). Expanding the Bessel functions in
(A12) after powers of p we obtain

Sm alln C*+4-pIn C*%p—2p40(p*In p)]
~ (14m)p[1+po In C2o0—po

~3B8(In C%0+4po In C?po—2p0)+0(p? In p) ]
(A13)

b
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with p = p(1 4+ m) 2", po = p(1 +m)~? and
C = e = 1.781.

From (A13), we have derived two different asymp-
totic expressions for 6, one for small 8 Inp, the other

for large B8 Inp. The first expression is®

6 = —(a/B){55B'=* + 18 (3) — Blny
+ (1+ Blnn)[38(1 — $w)Ing’ — 16° In'y
+ #8° In*¢’ + 0(8* In*¢')]
4 + O[B&*(Ink + 39t 1},
with ¢ = (1 4+ m)?t/C and ¢(3) = 1.202 (¢ is the

Riemann zeta-function). This expression can be
applied when

(A14)

38Ing)P K1 and #F*/(fInf) < 1.

When 18 In¢ < 1, we find

8= —(@/B){1 — 1+ Blo)[(38Ing)~"

— (1 4 398 (36 Ing)~ + 0(36 Ing)¥]}.  (A15)

The asymptotic solution for x becomes
n¢
(1 + m)*

x {~(1+m>1nn+1ns'+

1+ m

1L+ — (1 +m)lng
+ 0(£72) ;- Al16
AT e + 0(&™?) ( )_

A3. Asymptotic solutions for bounded X

It has already been mentioned that at great heights
(say 2z > 100m) equation (15) and (16) no longer
represent actual conditions to a reasonable degree of
approximation. For small values of x, this fact will
be of little consequence, but one must inquire at what
distance downwind the formulae of the preceding
sections are no longer applicable. In order to investi-
gate this question, asymptotic solutions have been
developed for bounded # and K.

In the case studied, # and K are considered to be
constant for z > Z—i.e., they are given by (15) and
(16) for 2 < Z, whilst for 2 > Z we have

u = uo(l + Z/21)™,
K = Ko(1 + Z/2)).

(A17)
(A18)

The solution for ¢ can be obtained by combining
-the cases (a) and (c) of section Al in a two-layer
‘problem with conditions of continuity of temperature
.and heat flux at z = Z (de Vries, 1957). We then find

8 = — aN/pA, (A19)

8 For simplicity, we have written £ = £y = & throughout the
;appendix; hence, £ = £y in the expression for 8 and ¢ = &y in
ithe expressions for x.
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with

N =[Li(RpY) + Li(Rp?)IKo(rp?)
+ [K1(RpY) — Ko(Rp)1Lo(rp?),
A = [Ii(RpY) + Lo(Rp) K (rop?) — [K1(Rp?)
— Ko(RpH) )11 (ropt) + B[ (Rp?)
+ Lo(RpH)JKo(rop?) + B[K:1(Rp?)
— Ko(Rp*) M o(rop?),
r =214 m)y“lgtmi2 yo = 2(1 + m),
R = 2(1 + m)y (1 + Z/z;)wmr2,
From (A19), the following two asymptotic expan-
sions were derived. The first one is
a | BL(1 + ar) In H/g — a:(1 4+ m) ]
B { 1+BInH

g =

Ba;
T AT mA ¥ Bz
2B(1 + ag)¢t
(1 + B In H)H0+m/
4B
" 3ri(1 + B In H)iE30+m1e

BH (1+m)/2 ’
+O(T)J, (A20)

for Bg/(1 + BInH)H™/2 &1 and HMY"/f K1,
where

gy BUTBIH=3)  B(1—38)
" (1+4BlnH):  (1+BIn H2H*m’
38 B
=

1— 4 :
2(1+BIn H)  (14+BIn H)

___1-3 B4 (4m) In H-p]
" 1+BInH (1+BlnH? '
BlnH
gyy=q———————="
1+BInH

Equation (A20) corresponds to (A14); for B¢/ H+m/2
> 1 we find -

5 — a ‘ 1 Ho+m2(1 4+ Bln H)
B B wiBg
H3G+m)12(1 + B ln H)3?
+ o[ e “ (A21)

The asymptotic solution for x is

x = D{lnH/q — (1 +m)™ + (1 + m)1{-0+m
+ xR -2 L (HAFm2EY ) (A22)

for HY*m/t L 1.
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The influence on 6 and x of the behavior of % and K
for z > Z can be assessed by comparing the asymptotic
solutions (A20), (A21), and (A22) with the cor-
responding solutions of section A2. When necessary,
the former can be used.

A4. Potential evaporation

When water is non-limiting, the evaporation rate
is determined by atmospheric conditions. I(x) is now
an unknown function that must be found by making
use of the condition that the air is saturated at the
surface.

Let L denote the Laplace transform operator and
L1 the inverse operator. Then we have

3(pm) = phL{I(§)},

where ¢, is given by (A12) with a, = a/I substituted
for a. Using the “Faltung” theorem, we obtain

(A23)

E
0@w)=J;HWﬂE—%@Mh (A24)
with
f(Ev’?) = L'I{WI}-
Similarly,
¢
x@m)=£:HWﬁ$—%wmh (A25)
with

g(Em) = LY {pm},

where 7y is found from #; by taking B = 0 and sub-
stituting Dy = D/I for —a..

The condition of saturation at the surface leads to
a relation between 0(£,1) and x(£1) from which I
must be solved. We shall suppose that, in the range
of surface temperatures found in the irrigated area,
the temperature can be represented to a sufficient
degree of approximation as a linear function of the
saturated specific humidity, g..:(7), viz.

T = 5qsat(T) + c.
Then we find, from (A24), (A25), and (A26),

(A26)

£
ﬁIwU@—wm—m@—mmm=¢ (A27)

where d is the difference between temperature and
dew point at the surface in the dry land. This is an
integral equation of Abel's type that can be solved
by the Laplace transformation method. Applying the
“Faltung” theorem, we find
L{I(8)}
_ AP K (ropt) [PPK 1 (r0p?) +BKo(ropt) ]
pl a1+ sD1) K, (ropt) Ko (rop?) +sBD1 K 2 (rop?) ]’
(A28)

pEVRIES

269

from which I can be found by the usual procedure.
However, the resulting expression is unwieldy and
inconvenient for numerical calculation.

An asymptotic solution for I can be readily derived
from (A28) with the use of the transforms listed by
Ritchie and Sakakura. We find

(A4m)d; 1 [1_0.5772_ 1.312
ar+sD: | Ing/Cl Ing/C In2¢/C
0.2520  3.997  5.064
s £/C Int¢/C Ins¢/C
+(3B8—B1) —B1(38—B1) In ¢

+8:2(36—81) (In? ' — 4r?)
FO(* In* H+0E It B |, (429)

I(¢)=

+0(In~* S)]

with 81 = 385D1/ (a1 + sD). For small £-values, we
have

I(¢) = LEH)™ + 11 +m)

a1+ sD;
+ B — (1 +m)B: + 0(£h) ].

We shall term I the “local potential irrigation
rate’’; the ‘“‘average potential irrigation rate” for a
strip of width x; in the wind direction is defined as

(A30)

1 anmd L rwas (as
= x)dx = — .
0 £

X1 1 Jo
Now we have
L{I(g)} = p7'L{I(£D)},

from which the following asymptotic expression is
found:

(A32)

) (14m)d[ 1 [ 04228 0.4662
It = 1+ —
ar+sDy ln g//¢L” "Ing//C ndg//C
1.147  0.5892  2.117

—_ — 0 l —6 1
i 5/C mig/C migyc o E)]

+ (38—B1) —B:1(38—B1)(In &'—1)

+512(%/3"51) (ln2 £ ~2In fll‘l‘z‘“%ﬂ'z)

+MwwaHmaﬂrwﬂ-<ma

From (A23) and (A28), we find
3(p, 1)
_ a1 dp K (rop?) Ko(ropt)
pL(a1+sD)pK1(rop) Ko(ropt) +sBD1 K2 (ropt) ]’
(A34)

from which the following expressions for the surface
temperature are derived:
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ad
o= —— -;.E{ 1—B; In £+82(In? §' — 1x?)
—B:°[In® &' — 3 In & +2¢(3)]
+0(84In* £)+0(BE 1 In £)}, (A35)
ald
o= — -—[1—=27"1(1 140 . A36
0 a1+sD1[ (14m)B1824-0(8) ] (A36)

In actual calculations, one first determines the
range of surface temperature approximately by using
a tentative value of s in (A35). A more accurate
s-value is then easily obtained by trial and error.
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